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Abstract

We introduce a notion ofdefinable tree decompositions
of graphs. Actually, a definable tree decomposition of a
graph is not just a tree decomposition, but a more compli-
cated structure that represents many different tree decom-
positions of the graph. It is definable in the graph by a tu-
ple of formulas of some logic. In this paper, only study tree
decomposition definable in fixed-point logic. We say that a
definable tree decomposition isovera class of graphs if the
pieces of the decomposition are in this class.

We prove two general theorems lifting definability re-
sults from the pieces of a tree decomposition of a graph to
the whole graph. Besides unifying earlier work on fixed-
point definability and descriptive complexity theory on pla-
nar graphs and graphs of bounded tree width, these gen-
eral results can be used to prove that the class of all graphs
without a K5-minor is definable in fixed-point logic and that
fixed-point logic with counting captures polynomial time on
this class.

1. Introduction

The question of whether there is a logic that captures poly-
nomial time is the central open problem in descriptive com-
plexity theory. It was first asked by Chandra and Harel [4]
in the context of database theory, and later in a slightly dif-
ferent form by Gurevich [13] in the context of finite model
theory. We say that a logicL captures polynomial time (on
a classC of structures)if the polynomial time decidable
properties of structures (in the classC ) are precisely those
definable inL. Actually, the exact definition of a logic cap-
turing PTIME is a bit more subtle; I refer the reader to the
short survey [11] in these proceedings for the definition and
more background on the quest for a logic capturingPTIME.

A natural logic that was considered a candidate for a
logic capturingPTIME for a while isinflationary fixed-point
logic with counting,IFP+C. Although Cai, Fürer, and Im-
merman [3] proved thatIFP+C does not capturePTIME on
all structures, in my LICS-paper 10 years ago [9] I showed
thatIFP+C capturesPTIME on the class of all planar graphs.

With Julian Mariño [12], we also proved the corresponding
result for classes of structures of bounded tree width. The
key step in the proofs of these results was to show that the
class of planar graphs and all classes of bounded tree width
are IFP+C-canonisable, that is, they admit a canonisation
mapping definable inIFP+C by means of a syntactical inter-
pretation. Acanonisation mappingfor a classC of struc-
tures may be viewed as a mapping that associates with each
structureA∈ C a canonical ordered copy of the structure.

The present paper is a continuation of the line of work of
[9, 10, 12]. The question we address here is the following:
Suppose we have structures that can be decomposed into
simpler structures. Then how can we lift definability results
from the simpler structures to the decomposable structures.
The technical notion of decomposition we use here is that of
tree decompositions of graphs over simpler graphs, which
are called thetorsi of the decomposition. For example, all
graphs have a tree decomposition whose torsi are the3-
connected componentsof the graphs. Graphs havebounded
tree width if and only if they have a tree decomposition
whose torsi are of bounded size. A well-known theorem
due to Wagner [27] states thatK5-freegraphs, that is, graphs
that do not contain the complete 5-vertex graphK5 as a mi-
nor, have a tree decomposition whose torsi are either planar
graphs or subgraphs of one exceptional 8-vertex graphL
(shown in Figure 4.2). Wagner’s theorem was generalised
by Robertson and Seymour [25] to a powerful structure the-
orem for arbitrary classes of graphs with excluded minors,
which states that for everyk ≥ 1, all Kk-free graphs have a
tree decomposition whose torsi are almost embeddable into
some fixed surface.

If we want to lift definability results from the torsi of
a structure’s tree decomposition to the whole structure, we
need to be able to define the tree decomposition. The main
contribution of this paper is to come up with a notion ofde-
finable tree decompositionthat allows us to lift definability
results and results about canonisation and capturing poly-
nomial time. The technical problem in trying to define tree
decompositions is that definable sets are invariant under iso-
morphisms, whereas tree decompositions usually are not —
think of a tree decomposition of a cycle. Therefore, defin-



able tree decompositions are more complicated structures
than normal tree decompositions. Intuitively, they may be
viewed as directed acyclic graphs whose nodes carry the
torsi of the decomposition. These structures do not just rep-
resent one tree decomposition of a graph, but many different
tree decompositions of parts of the graph.

We prove that the tree decompositions of graphs into
their 3-connected components, of bounded tree width
graphs into torsi of bounded order, and ofK5-free graphs
into planar graphs and subgraphs ofL are all definable in
inflationary fixed-point logicIFP. I believe that Robertson
and Seymour’s decomposition ofKk-free graphs into almost
embeddable torsi is also definable inIFP, but this requires
considerable additional work related to the definability of
“almost embeddable” graphs, which will not be carried out
in this paper.

We prove two general theorems about lifting definability
results: The first states that if a class of torsi is definable in
IFP, then the class of all graphs with a decomposition over
these torsi is also definable inIFP. Once the framework is
set up, this result is not difficult to prove. Nevertheless,
it allows us to prove that the class of allK5-free graphs is
definable inIFP. It is not obvious how to obtain anIFP-
definition of this class in a direct way.

The second result, which is much deeper, is concerned
with definable canonisation and descriptive complexity the-
ory. For a classC of graphs, we letS (C ) be the class of all
structures whose Gaifman graph is inC . We prove that if
A ,C are classes of graphs, and we have anIFP+C-definable
tree decomposition of the graphs inC with torsi inA , then
if S (A ) is IFP+C-canonisable then so isS (C ). To obtain
this result, we need to work with two-sorted relational struc-
tures with one finite universe of vertices and a universe of
all nonnegative integers, and with mixed relations involving
vertices and numbers. A consequence of this general result
is thatIFP+C capturesPTIME on the class ofK5-free graphs.

Our general approach using definable tree decomposi-
tion also unifies the result from [12] that all classes of struc-
tures of bounded tree width areIFP+C-canonisable and a
lemma from [9] lifting the canonisability of 3-connected
planar graphs to arbitrary finite graphs. Although it was
obvious that these two results were proved by very similar
ideas, the proofs in [9, 12] were very ad-hoc, and for a long
time it was not clear to me how a common generalisation
might look.

There is one last consequence of our results that I would
like to mention. It is known [3] that a simple combinato-
rial algorithm known as the Weisfeiler-Leman (WL) algo-
rithm can be used as a polynomial time isomorphism test on
classes of graphs that admitIFP+C-definable canonisation.
Hence it follows from our results that the WL-algorithm
provides an isomorphism test forK5-free graphs.1

1It is known that isomorphism for all graph classes with excluded mi-

Organisation of the paper

The paper is divided into two parts. In the first part, we
introduce definable tree decompositions and prove the de-
finability results. The second part is concerned with defin-
able canonisation. Due to space limitations, we have to omit
most of the proofs.2 To make this conference version more
interesting, I decided to put an emphasis on the first part.
But this means that the second part has become very con-
densed and mainly consists of definitions and a statement of
the main result.

Notation

Z≥0, andN denote the sets of nonnegative integers and nat-
ural numbers (that is, positive integers), respectively. For
m,n ∈ Z≥0, we let [m,n] := {ℓ ∈ Z≥0 | m ≤ ℓ ≤ n} and
[n] := [1,n].

We often denote tuples(v1, . . . ,vk) by~v. If ~v denotes the
tuple(v1, . . . ,vk), then by ˜v we denote the set{v1, . . . ,vk}. If
~v= (v1, . . . ,vk) and~w = (w1, . . . ,wℓ), then by~v~w we denote
the tuple(v1, . . . ,vk,w1, . . . ,wℓ). By |~v| we denote the length
of a tuple~v, that is,|(v1, . . . ,vk)| = k.

PART I. DEFINABILITY

2. Preliminaries

2.1. Graphs

Graphs in this paper are always finite, nonempty, and sim-
ple, where simple means that there are no loops or parallel
edges. Unless explictly called “directed”, graphs are undi-
rected. The vertex set of a graphG is denoted byV(G) and
the edge set byE(G). We view graphs as relational struc-
tures withE(G) being a binary relation onV(G). However,
we often find it convenient to view edges (of undirected
graphs) as 2-element subsets ofV(G) and use notations like
e = {u,v} and v ∈ e. G denotes the class of all graphs.
Subgraphs, induced subgraphs, union, and intersection of
graphs are defined in the usual way. We writeG[W] to de-
note the induced subgraph ofG with vertex setW ⊆V(G),
and we writeG\W to denoteG[V(G) \W]. A minor of a
graphG is a graph that is isomorphic to a graph obtained
from a subgraph ofG by contracting edges. A graph isH-
free if it does not containH as a minor. Theorder of a
graph, denoted by|G|, is the number of vertices ofG.

For every finite nonempty setV, we letK[V] be thecom-
plete graphwith vertex setV. We let Kn := K

[

[n]
]

, and
we letKm,n be a complete bipartite graph with parts of size

nors, such as the class ofK5-free graphs, can be decided in polynomial
time [24]. It seems that the algorithm of [24], which unfortunately is only
published in Russian, uses algebraic techniques. Thus the simple combina-
torial algorithm we obtain here forK5-free graphs may be of some interest.

2A full version of this paper is available on my webpage.



m,n. A clique in a graphG is a setW ⊆ V(G) such that
G[W] is a complete graph, and anindependent setin G is a
setW ⊆V(G) such thatE(G[W]) = /0. Pathsandcyclesin
graphs are defined in the usual way. Thelengthof a path or
cycle is the number of its edges. Aninternalvertex of a path
is a vertex that is not an endpoint, and a path fromW to W′

is a path with one endpoint inW and one endpoint inW′ and
no internal vertex inW∪W′. Two paths are(internally) dis-
joint if they have no (internal) vertex in common.Connect-
ednessandconnectedcomponents are defined in the usual
way. Let G be a graph. A setW ⊆ V(G) is connectedif
W 6= /0 andG[W] is connected. A graphG is k-connected,
for somek ≥ 1, if |G| > k and for everyW ⊆ V(G) with
|W| < k the graphG\W is connected. A setS⊆V(G) is a
separatorof G, or separates G, if G\Shas more than one
connected component.S is aminimal separatorif S, but no
proper subset ofS, is a separator. Theorderof a separator is
its cardinality|S|. For setsW1,W2 ⊆V(G), a setS⊂ V(G)
separates W1 from W2, or is a(W1,W2)-separator, if there
is no path from a vertex inW1 \S to vertex inW2 \S in the
graphG\S. S is aminimal(W1,W2)-separatorif S, but no
proper subset ofS, is a (W1,W2)-separator. Recall that by
Menger’s Theorem there is a family ofk disjoint paths from
W1 to W2 if and only if there is no(W1,W2)-separator of
order less thank.

A forest is an undirected acyclic graph, and atree is a
connected forest. It will be a useful convention to call the
vertices of trees and forestsnodes. A rooted treeis a triple
T = (V(T),E(T), r(T)), where(V(T),E(T)) is a tree and
r(T)∈V(T) is a distinguished node called theroot. A node
s of a rooted treeT is theancestorof a nodet, andt is a
descendantof s, if s appears on the unique path from the
root r(T) to t. Parentsandchildrenof a node are ancestors
and descendants adjacent to the node.

2.2. Inflationary fixed-point logic

I assume that the reader has a solid background in logic
and, in particular, is familiar with the standard fixed-point
logics used in finite model theory. Background material
can be found in [5, 8, 17, 19]. In the first part of this pa-
per, we shall work withinflationary fixed-point logicIFP
over graphs.IFP-formulas are build from atomic formulas
Exy, expressing incidence, andx = y by the usual propo-
sitional connectives, existential and universal quantification
over vertices, and a fixed-point operator with inflationary
semantics. To follow the first part of the paper, it is suffi-
cient to know that basic graph properties involving connec-
tivity and separators can be expressed inIFP.

Let me just mention one nonstandard piece of notation
here: We writeϕ(x1, . . . ,xk) to denote that the free variables
of the formulaϕ are amongx1, . . . ,xk. For a graphG and
verticesv1, . . . ,vk, we writeG |= ϕ [v1, . . . ,vk] to denote that
Gsatisfiesϕ if xi is interpreted byvi for i ∈ [k]. Fori < k, we

let ϕ [G;v1, . . . ,vi ,xi+1, . . . ,xk] denote the(k− i)-ary relation
consisting of all tuples(w1, . . . ,wk−i) ∈ V(G)k−i such that
G |= ϕ [v1, . . . ,vi ,w1, . . . ,wk−i ].

3. Tree decompositions

A tree decompositionof a graphG is a pair(T,B), where
T is a tree andB is a mapping that associates with every
nodet ∈V(T) a setBt ⊆V(G) such that for everyv∈V(G)
the set{t ∈V(T) | v∈ Bt} is connected inT, and for every
e∈ E(G) there is at ∈V(T) such thate⊆ Bt . The setsBt ,
for t ∈ V(T), are called thebagsof the decomposition. It
is sometimes convenient to have the treeT in a tree decom-
position rooted; we always assume it is. Thewidthof a tree
decomposition(T,B) is max{|Bt |−1 | t ∈V(T)}. Thetree
width of a graphG, denoted by tw(G), is the minimum of
the widths of all tree decompositions ofG. Theadhesion
of a tree decomposition(T,B) is max{|Bs∩Bt | | {s,t} ∈
E(T)}.

Let (T,B) be a tree decomposition of a graphG andt ∈
V(T) such thatBt 6= /0. ThetorsoJBtK at t is the graph

JBtK := G[Bt ] ∪
⋃

swith {s,t}∈E(T)

K[Bs∩Bt ].

(T,B) is a tree decompositionover a classC of graphs if
all its torsi belong toC . Note that torsi are only defined for
nodes with nonempty bags. For every nodet ∈V(T), we let

B≥t :=
⋃

s=t or sdescendant oft

Bs.

3.1. Definable tree decompositions

Definition 3.1. Let L be a logic
(1) A k-ary TD-scheme inL is a tuple

Θ =
(

θV(~x),θE(~x,~x′),θsep(~x,y),θcomp(~x,y)
)

of L-formulas in the language of graphs, where~x,~x′ are
k-tuples of variables.

In the following, let G be a graph andΘ a k-ary TD-
scheme.
(2) All tuples~v ∈ V(G)k with G |= θV [~v] are calledΘ-

nodes (in G), and for allΘ-nodes~v,~v′, if G |= θE[~v,~v′]
then~v′ is a calledΘ-child of~v. For everyΘ-node~v we
let

SΘ
~v := θsep[G;~v,y],

CΘ
~v := θcomp[G;~v,y],

BΘ
≥~v := SΘ

~v ∪CΘ
~v .

We call Θ-nodes~v,~v′ Θ-equivalentif SΘ
~v = SΘ

~v′ and
CΘ

~v = CΘ
~v′ .



(3) Θ defines a tree decomposition on Gif the following
conditions are satisfied:

(i) For everyΘ-node~v, the setCΘ
~v is the vertex set of

a connected component ofG\SΘ
~v .

(ii) For every connected componentC of G there is at
least oneΘ-node~v with CΘ

~v = V(C).

Each such node is called aroot node for C.

(iii) If a Θ-node~v′ is a Θ-child of a Θ-node~v, then
BΘ
≥~v′ ⊆ BΘ

≥~v andCΘ
≥~v′ ⊂CΘ

≥~v.

(iv) For all Θ-nodes~vand allΘ-children~v1,~v2 of~v, ei-
ther~v1 and~v2 areΘ-equivalent, orBΘ

≥~v1
∩BΘ

≥~v2
=

SΘ
~v1
∩SΘ

~v2
.

In the following, we assume thatΘ defines a tree decompo-
sition onG, and we let~v be aΘ-node.
(4) Thebag defined byΘ at~v is the set

BΘ
~v := BΘ

≥~v\
⋃

~v′ Θ-child of~v

CΘ
~v′ .

(5) Thetorso defined byΘ at~v is the graph
r

BΘ
~v

z
:= G[BΘ

~v ]∪K[SΘ
~v ]∪

⋃

~v′ Θ-child of~v

K[SΘ
~v′ ].

(6) Theadhesionof the decomposition defined byΘ onG
is max

{

|S~v|
∣

∣~v Θ-node
}

. y

Remark 3.2.In this paper, we only consider TD-schemes in
the logicIFP. Hence from now on, all TD-schemes will be
be in IFP, and we will not mention this anymore when we
introduce them.

It is straightforward to generalise the definition of de-
finable tree decompositions from graphs to arbitrary struc-
tures. But as the classes of structures we study here are
always defined in terms of their Gaifman graphs, we would
not gain much from this generalisation. y

Remark 3.3.While the definition of definable tree decom-
position may seem quite generic, it took me a while to arrive
at this definition. Two important aspects of the definition
that are not entirely obvious are: (A) The definition is based
on the setsB≥t rather than the bagsBt , and (B) the nodes~v
are not linked to the separatorsS~v or the bags in a direct way.
(A) will be crucial in the proof of Lemma 3.6; via Defini-
tion 3.1 (iii) it guarantees the acyclicity of the graph defined
by theΘ-child relation. (B) is important in the proofs of
Theorem 4.1 and Lemma 4.8, where theΘ-nodes~v will be
chosen in such a way that they do not only control the bag
at the current node, but also the children of the node. The
following example illustrates this point. y

Example 3.4. Suppose we want to define a tree decompo-
sition of some graphG by a TD-schemeΘ, and suppose

that at some point during the decomposition we are at aΘ-
node~v whereBΘ

≥~v is a cycle of odd length, say with ver-

ticesw0, . . . ,w2n in cyclic order, and we haveSΘ
~v = {w0}

and henceC~v = {w1, . . . ,w2n}. The obvious way to decom-
pose the cycle would be to pick ani ∈ [2n] and attach two
children~v1,~v2 to~v with separatorsSΘ

~v1
= SΘ

~v2
= {w0,wi} and

componentsCΘ
~v1

= {w1, . . . ,wi−1}, CΘ
~v2

= {wi+1, . . . ,w2n}.
But which i shall we choose? There is no distinguished
choice, not even a unique “middle” or “first” vertex on the
cycle, as there is an automorphism that keepsw0 fixed and
mapsw1 to w2n andwn to wn+1. It seems as if we can only
resolve this by choosing severali and create twoΘ-children
for all of them. But this would violate condition (iv) of Def-
inition 3.1.

The solution is to make the choice already at the node~v.
That is, the tuple~v will already contain one of the vertices
wi for i ∈ [2n] that determines the choice of the children at~v.
Surprisingly, this solves our problem, because we can sim-
ply add one node~vi to our decomposition for each choice
of wi . All these nodes will have the same separator and
component, hence be equivalent, and therefore not violate
Definition 3.1 (iv).

This idea appears, in slightly different forms, in the
proofs of Theorem 4.1 and Lemma 4.8. y

Definition 3.5. Suppose that a TD-schemeΘ defines a tree
decomposition on a graphG. Then a tree decomposition
(T,B) of G is compatiblewith Θ if it satisfies the following
conditions:
(i) Br(T) = /0 for the rootr(T).

(ii) All nodes t ∈V(T)\ {r(T)} areΘ-nodes.

(iii) All children of the rootr(T) are rootΘ-nodes.

(iv) If a node t ′ is a child of nodet 6= r(T), then t ′ is a
Θ-child of t.

(v) For all nodest ∈ V(T) \ {r(T)}, the torsoJBtK of the
decomposition(T,B) at t is equal to the torso

q
BΘ

t

y

defined byΘ at t. y

Lemma 3.6. Suppose that a TD-schemeΘ defines a tree
decomposition on a graph G. Then there is a tree decompo-
sition (T,B) of G that is compatible withΘ.

Proof. To distinguish between nodes of the treeT to be de-
fined andΘ-nodes, we call the formerT-nodes. Similarly,
we speak ofT-children. We defineT inductively:
– We create a root noder = r(T), which is not aΘ-node.

All other T-nodes will beΘ-nodes.

– For every connected componentC of G, we arbitrarily
choose aΘ-node~v with CΘ

~v = V(C) and make it a child
of the rootr.

– For every T-node~v 6= r, we arbitrarily chooseΘ-
children~v1, . . . ,~vm of~v such that for everyΘ-child~v′ of



~v there is exactly onei ∈ [m] such that~v′ is Θ-equivalent
to~vi . We let~v1, . . . ,~vm be theT-children of~v.

Formally, children are only defined in trees and it is not clear
yet thatT really is a tree. Therefore, the definition should
be read as the definition of a directed graph, where “~v′ is a
T-child of~v” simply means that there is an edge inT from
~v to~v′. Directed pathsin T are paths in this directed graph.
In Claim 2, we shall proof thatT is a tree.

Observe that if~v′ is aΘ-child of~v, then

BΘ
~v ∩BΘ

≥~v′ = SΘ
~v′ . (3.1)

Claim 1: Let~v1,~v2 ∈V(T)\ {r} such that~v1 is an ancestor
of~v2 in T. Then for everyT-node~v on a directed path inT
from~v1 to~v2 it holds thatBΘ

~v1
∩BΘ

≥~v2
⊆ SΘ

~v .

Proof. This follows from (3.1) by a straightforward induc-
tion. y

Claim 2: T is a rooted tree.

Proof. It follows immediately from the definition ofT that
all nodes are reachable from the root via a directed path.
It follows from Definition 3.1 (iii) thatT has no directed
cycle. Hence ifT is not a tree, then there is aT-node~v0

with T-children~v1 and~v2 that have a common descendant
~v3. Then by Definition 3.1 (iii) and (iv)

BΘ
≥~v3

⊆ BΘ
≥~v1

∩BΘ
≥~v2

⊆ SΘ
~v1
∩SΘ

~v2
⊆ BΘ

~v0
.

Hence by Claim 1,

BΘ
≥~v3

= BΘ
≥~v3

∩BΘ
~v0

⊆ SΘ
≥~v3

.

It follows thatCΘ
~v3

= /0, which is a contradiction. y

We letBr := /0 andB~v := BΘ
~v for every~v∈V(T)\{r}. For

everyw∈V(G), we letB−1(w) := {~v∈V(T) | w∈ B~v}.

Claim 3: For everyw∈V(G) the setB−1(w) is connected
in T.

Proof. To prove thatB−1(w) is nonempty, let~v∈V(T) such
thatw∈BΘ

≥v andw 6∈BΘ
≥v′ for all T-children~v′ of~v. Suppose

for contradiction thatw 6∈ B~v. Then by the definition ofBΘ
~v ,

there is aΘ-child~v′′ of~v such thatw∈CΘ
~v′′ . But then there

also is aT-child~v′ of~v such thatw∈CΘ
~v′ ⊆ BΘ

≥v′ . This is a

contradiction, which proves thatB−1(w) is nonempty.
To see thatB−1(w) is connected, suppose thatw∈ B~v1

∩
B~v2 for two T-nodes~v1,~v2. We shall prove thatw∈ B~v for
every~v on the (undirected) path inT from~v1 to ~v2. This
follows immediately from Claim 1 if~v1 is an ancestor of~v2

or vice-versa. Otherwise, let~v3 be the last common ancestor
of~v1 and~v2, and fori = 1,2, let~v′i be theT-child of~v3 on
the path from~v3 to~vi . Then~v′1 6≡

Θ ~v′2, and we have

w∈ B~v1 ∩B~v2 ⊆ BΘ
≥~v′1

∩BΘ
≥~v′1

⊆ SΘ
~v′1
∩SΘ

~v′2
⊆ B~v3.

It follows from Claim 1 thatw∈ B~v for every~v on the path
in T from~v3 to~v1 and for every~v on the path inT from~v3

to~v2. Hencew∈ B~v for every~v on the path inT from~v1 to
~v2. y

Claim 4: For every edgee∈ E(G) there is a node~v∈V(T)
such thate⊆ B~v.

Proof. Let~v∈V(T) such thate⊆ BΘ
≥v ande 6⊆ BΘ

≥v′ for all
T-children~v′ of ~v. Suppose for contradiction thate 6⊆ B~v.
Arguing similarly as in the proof of Claim 3, we find aT-
child~v′ of~v such thate∩CΘ

~v′ 6= /0. Ase 6⊆ BΘ
≥v′ = SΘ

~v′ ∪CΘ
~v′ ,

this contradicts Definition 3.1 (i). y

Hence(T,B) is a tree-decomposition ofG. It follows
immediately from the definitions that(T,B) is compatible
with Θ.

Definition 3.7. Let Θ be a TD-scheme. Furthermore, let
A ,C be classes of graphs.
(1) Θ defines a tree decomposition on a graphG overA

if all torsi defined byΘ onG are inA .

(2) Θ defines a tree decomposition onC overA if for ev-
ery G∈ C the schemeΘ defines a tree decomposition
onG overA .

(3) The classC admits anIFP-definable tree decomposi-
tion overA if there is a TD-scheme that defines a tree
decomposition onC overA . y

Corollary 3.8. If a TD-schemeΘ defines a tree decompo-
sition on a graph G over a classA of graphs, then there is
a tree decomposition of G overA .

We close this section with two simple lemmas, whose
straightforward proofs we omit.

Lemma 3.9. LetA ,B,C be classes of graphs such thatC

admits anIFP-definable tree decomposition overB andB

admits anIFP-definable tree decomposition overA . Then
C admits anIFP-definable tree decomposition overA .

Lemma 3.10. There is a TD-schemeΘ such that for all
graphs G, the schemeΘ defines a tree decomposition on G
and the torsi defined byΘ on G are precisely the connected
components of G.

3.2. Definability results

Lemma 3.11. Let Θ be a k-ary TD-scheme.
(1) There is anIFP-sentence tdΘ such that for all graphs

G we have G|= tdΘ if and only ifΘ defines a tree de-
composition on G.

(2) There is anIFP-formula bagΘ(~x,y) such that for ev-
ery graph G and every tuple~v ∈ V(G)k, if Θ defines
a tree decomposition on G and~v is a Θ-node, then
bagΘ[G;~v,y] = BΘ

~v .



(3) There is anIFP-formula torsoΘ(~x,y,z) such that for ev-
ery graph G and every tuple~v ∈ V(G)k, if Θ defines
a tree decomposition on G and~v is a Θ-node, then
torsoΘ[G;~v,y,z] is the edge relation of the torso

q
BΘ

~v

y
.

Proof. This follows immediately from the fact that the sets
SΘ
~v , CΘ

~v , BΘ
≥~v and theΘ-child relation are definable by the

formulas appearing inΘ (by definition) and that graph
reachability is definable inIFP.

Theorem 3.12 (First Lifting Theorem). Let Θ be a TD-
scheme. LetA be anIFP-definable class of graphs, and let
TΘ(A ) be the class of all graphs G such thatΘ defines a
tree decomposition on G overA .

ThenTΘ(A ) is IFP-definable.

Proof. Follows easily from the previous lemma.

Corollary 3.13. LetA be anIFP-definable class of graphs,
and letT (A ) be the class of all graphs that have a tree
decomposition overA . Suppose thatT (A ) admits anIFP-
definable tree decomposition overA .

ThenT (A ) is IFP-definable.

Definition 3.14. A TD-schemeΘ defines a tree decompo-
sition on a graphG weakly overa classA if there is a tree
decomposition ofG overA that is compatible withΘ. y

Lemma 3.15. Let A be anIFP-definable class of graphs.
Then for every TD-schemeΘ there is a TD-schemeΘ′ such
that for all graphs G, ifΘ defines a tree decomposition on G
that is weakly overA thenΘ′ defines a tree decomposition
on G overA .

Proof. Let G be a graph such thatΘ defines a tree decom-
position onG that is weakly overA . Let (T,B) be a tree
decomposition ofG that is compatible withΘ.

We inductively define setsNi , for i ∈ Z≥0, of Θ-nodes
as follows:
– N0 := /0.

– Ni+1 is the set of allΘ-nodes~v such that
q
BΘ

~v

y
∈ A ,

BΘ
~v = BΘ

≥~v\
⋃

~v′∈Ni , G|=θE[~v,~v′]

CΘ
~v′ ,

and
r

BΘ
~v

z
= G[BΘ

~v ]∪K[S~v]∪
⋃

~v′∈Ni , G|=θE[~v,~v′]

K[S~v′ ].

A straightforward induction shows that all nodes ofT ex-
cept the root are in

⋃

i≥0Ni .
Furthermore, it is easy to define anIFP-formula ϕ(~x)

(not depending onG) such thatϕ [G;~x] =
⋃

i≥0Ni . We let
θ ′

V(~x) := θV(~x)∧ϕ(~x), andθ ′
E := θE, θ ′

sep:= θsep, θ ′
comp:=

θcomp. ThenΘ′ := (θ ′
V ,θ ′

E,θ ′
sep,θ ′

comp) defines a tree de-
composition onG overA .

4. Applications

4.1. Graphs of bounded tree width

For everyk∈N, letGk denote the class of all graphs of order
at mostk, and letTk−1 be the class of all structures of tree
width at mostk−1. Observe that a structure is inTk−1 if
and only if it has a tree decomposition overGk.

Theorem 4.1. For every k∈ N, the classTk−1 admits an
IFP-definable tree decomposition overGk.

Corollary 4.2 (Grohe and Mari ño [12]). For every k∈
Z≥0, the classTk is IFP-definable.

4.2. Hinges

Definition 4.3. A hingeof a graphG is a minimal separator
Sof G such that for every connected componentC of G\S
the graphG

[

V(C)∪S
]

∪K[S] is a minor ofG. y

The basic idea that we pursue in the following is to re-
cursively separate a graph along small hinges until no more
small hinges are left. This gives us a tree decomposition
where the torsi have no small hinges and are minors of the
graph. Thinking of a graph without small hinges as “highly
connected”, we have thus decomposed our graph into highly
connected components that are all minors of the graph. If
we are lucky, this decomposition is even definable. Unfor-
tunately, this idea only works for hinges of order at most 3.
Hinges of order 1 and 2 are just minimal separators, hence
a graph without hinges of order 1 and 2 is 3-connected in
the usual sense. The analogue for hinges of order 3 does
not holds; there are minimal separators of order 3 that are
no hinges. However, the following lemma shows that in 3-
connected graphs, minimal separators of order 3 that are no
hinges can just separate single vertices from a graph. This
will be good enough for us.

Lemmas 4.4 and 4.6 contain the graph theory that goes
into the proof of Lemma 4.8, the main result of this section.

Lemma 4.4. Let G be a 3-connected graph and S a sepa-
rator of G of order3. Then either S is a hinge, or S is an
independent set and G\S has exactly two connected com-
ponents, one of which has order1.

Proof. Let S= {v1,v2,v3}. As G is 3-connected,S is mini-
mal

We first prove that ifS is not an independent set, thenS
is a hinge. To see this, suppose that{v1,v2} ∈ E(G), and
let C,C′ be two connected components ofG\S. Let w ∈
C′. As G is 3-connected, there are internally disjoint paths
Pi, for i ∈ [3], from w to vi . By deleting all vertices not in
V(C)∪S∪

⋃3
i=1V(Pi), contractingP3 to a single vertex, and

contractingP1 andP2 to single edges, we see thatG[V(C)∪
S]∪K[S] is a minor ofG.



It follows that if G\Shas more than two connected com-
ponents, thenSis a hinge, because by contracting one of the
components we can obtain an edge between vertices inS.

So suppose thatG\Shas precisely two connected com-
ponents, say,C1 andC2, and that|C1| ≥ 2 and |C2| ≥ 2.
Let w ∈ V(C2). As G is 3-connected, there are internally
disjoint pathsPi, for i ∈ [3], from w to vi . At least one of
these paths has length≥ 2. If not, {w} is a separator of
G, which contradicts the 3-connectedness ofG. Say,P1 has
length at least 2. ThenV(P1)\ {v1,w} 6= /0. LetQ be a path
from V(P1) \ {v1,w} to V(P2)∪V(P3) in G\ {v1,w}; such
a path exists becauseG is 3-connected. Say,w1 ∈ V(P1)
and w2 ∈ V(P2) are the endpoint ofQ. By contracting
the piece ofP1 from w1 to v1 and the pieceP2 from w2

to v2, and contractingQ to a single edge, we obtain an
edge betweenv1 and v2. Now we can argue as above to
prove thatG[V(C1)∪S]∪K[S] is a minor ofG. By symme-
try, G[V(C2)∪S]∪K[S] is also minor ofG. HenceS is a
hinge.

Corollary 4.5. For all k ∈ [3] there is an IFP-formula
hingek(x1, . . . ,xk) such that for every k-connected graph G
and every tuple~v∈V(G)k we have

G |= hingek[~v] ⇐⇒ ~v is a hinge.

Proof. The proofs fork = 1,2 are straightforward because
hinges of order 1 and 2 are just minimal separators, and the
statement fork = 3 follows from Lemma 4.4.

Let G be a graph andW ⊆V(G). We say that a hingeS
of G is inseparablefrom W if there is no hingeS′ such that
|S′| ≤ |S|, W,S 6⊆ S′, andS′ separatesSfromW. Thesphere
around W is the setS(W) of all vertices inV(G) \W that
are adjacent to a vertex inW. For a subgraphH ⊆ G, we let
S(H) := S(V(H)). A hinge extension of W of order at most
k is a vertexv ∈ V(G) \W such that for every connected
componentC of G\ (W∪{v}), the sphereS(C) aroundC is
a hinge of order at mostk.

Lemma 4.6. Let k∈ [3]. Let G be a k-connected graph
and W⊆ V(G) a clique of order k in G such that there is
no hinge extension of W of order k. Let S1,S2 be hinges of
order k of G such that:

(i) S1 6= S2 and W 6⊆ Si for i = 1,2.

(ii) For i = 1,2, the hinge Si is inseparable from W.

For i = 1,2, let Ci be a connected component of G\Si such
that W∩V(Ci) = /0. Then V(C1)∩V(C2) = /0.

Proof. We only prove the lemma fork = 3. The proofs for
k = 1 andk = 2 are similar, but simpler.

For i = 1,2, letAi be the connected component ofG\Si

with W ∩V(Ai) 6= /0, and letBi be the union of all other
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Figure 4.1.

connected components ofG\Si . ThenCi ⊆ Bi . To sim-
plify the notation, for the rest of this proof we do not dis-
tinguish between the graphsAi andBi and their vertex sets.
Let S+ := S1∩S2 andSiA := Si ∩A3−i , SiB := Si ∩B3−i for
i = 1,2. Figure 4.1(a) illustrates the situation.

As Si does not separateS3−i from W, we have

|S1A| ≥ 1, |S2A| ≥ 1. (4.1)

Suppose for contradiction thatV(C1)∩V(C2) 6= /0. Then
B1∩B2 6= /0, and henceS+ ∪S1B∪S2B is a separator ofG.
SinceG is 3-connected, this implies

|S+∪S1B∪S2B| ≥ 3. (4.2)

Case 1: W⊆ S1∪S2.
Then either|W∩S1| ≥ 2 or |W∩S2| ≥ 2. Without loss of
generality we assume that|W∩S1| ≥ 2. Figures 4.1 (b) and
(c) show the only two configurations that are consistent with
all the constraints we have derived or imposed so far.

I claim that in both configurations the unique vertex in
S1B is a hinge extension ofW of order 3. To see this, letC
be a connected component ofG\ (W∪S1B). Suppose first
that S(C) = W∪S1B. Then there is a pathP with internal
vertices inC from S1A to S1B. This path must intersectS2,
which is only possible inS2B. HenceS2B∩V(C) 6= /0. But
then there is a path fromS2B to S2A which does not intersect
S1, which is impossible. ThusS(C) ⊂ W∪S1B and hence
|S(C)| = 3. As |S1B| = 1, it follows thatS(C) contains at
least two vertices of the cliqueW. HenceS(C) is not an
independent set and therefore a hinge by Lemma 4.4.

Thus the vertex inS1B is indeed a hinge extension ofW.
This is a contradiction, because we assumed thatW has no
hinge extensions of order 3. y



Case 2: W6⊆ S1∪S2.
Then A1 ∩ A2 6= /0. HenceS := S+ ∪S1A ∪S2A separates
A1∩A2 from B1∩B2. By the 3-connectedness ofG it fol-
lows that|S| ≥ 3, and by (4.2) we obtain|S|= 3. I claim that
S is a hinge. If|W∩S| ≥ 2, thenS is not an independent set.
If |W∩S| ≤ 1 andGhas exactly two connected components,
then one of these components containsW \Sand the other
contains the nonempty setsS1B andS2B. Hence both com-
ponents have order at least 2. Otherwise,G\S has more
than two connected components. In all cases,S is a hinge
by Lemma 4.4. AsSseparatesS1 from W, this contradicts
assumption (ii).

Corollary 4.7. Let k∈ [3]. Let G be a k-connected graph.
Let S be a hinge of order k in G and C a connected compo-
nent of G\S such that there is no hinge extension of order
k of S in C. Let S1,S2 ⊆V(C)∪S be hinges of order k of G
such that:
(i) S1 6= S2 and Si 6= S for i= 1,2.

(ii) For i = 1,2, the hinge Si is inseparable from S.
For i = 1,2, let Ci be a connected component of G\Si such
that S∩Ci = /0. Then V(C1)∩V(C2) = /0.

Proof. Apply Lemma 4.6 to the graphG[V(C)∪S]∪K[S].

Lemma 4.8. For all k ∈ [3], there is a TD-schemeΘ that
for all k-connected graphs G defines a tree decomposition
on G such that for all torsiJBK defined byΘ on G:
(1) JBK is a minor of G.

(2) JBK has no hinges of order≤ k.

Proof. We only prove the lemma fork = 3. The proofs for
k = 1 andk = 2 are similar, but simpler. For simplicity, all
hinges and hinge extensions in this proof are assumed to be
of order 3.

It suffices to define aΘ that defines a tree decomposition
with the desired properties on all 3-connected graphsG with
at least one hinge, because by Corollary 4.5 the class of 3-
connected graphs with at least one hinge isIFP-definable.

We shall define a 6-ary TD-scheme that for every 3-
connected graphG with at least one hinge defines a tree
decomposition onG with the desired properties.

To simplify the notation, for 6-tuples~v = (v1, . . . ,v6) we
let~vI := (v1,v2,v3) and~vII := (v4,v5,v6).

Let G be a 3-connected graph with at least one hinge.
The IFP-formulas we shall define in the following will not
depend onG. The decomposition defined byΘ on G has
three kinds of nodes: root nodes, e-nodes, and h-nodes.
Root nodesare tuples~v ∈ V(G)6 whereṽI is a hinge and
~vII =~vI . E-nodesare tuples~v∈ V(G)6 whereṽI is a hinge
andv4 = v5 = v6 is a hinge extension of ˜vI . H-nodesare
tuples~v ∈ V(G)6 whereṽI 6= ṽII are both hinges with the

following properties: There is a connected componentC of
G\ ṽI such that
– there is no hinge extension of ˜vI in C;

– ṽII ⊆V(C)∪ ṽI ;

– ṽII is inseparable from ˜vI .
It is easy to defineIFP-formulas root(~x), e-node(~x), and
h-node(~x) that define the root nodes, h-nodes, and e-nodes.
We letθV(~x) be the disjunction of these three formulas.

We define theIFP-formulaθsep(~x,y) in such a way that
for all root nodes~v we haveθsep[G;~v,y] = /0, and for all e-
nodes or h-nodes we haveθsep[G;~v,y] = ṽI . We define the
formulaθcomp(~x,y) in such a way that for all root nodes~v we
haveθcomp[G;~v,y] = V(G), and for all e-nodes or h-nodes,
θcomp[G;~v,y] is the vertex set of the connected component
of G\ ṽI that contains ˜vII \ ṽI .

In the following, for all nodes~v we letS~v := θsep[G;~v,y],
C~v := θcomp[G;~v,y], andB≥~v := S~v∪C~v. This is the same
notation as in Definition 3.1, except that we omit the super-
scriptΘ.

We define the formulaθE(~x,~x′) in such a way that for all
nodes~v,~v′ we haveG |= θE[~v,~v′] if and only if the following
conditions are satisfied:
– ~v′ is an e-node or h-node.

– S~v′ separatesS~v fromC~v′ .

– If ~v is a root node or an h-node, then~v′I =~vII .

– If ~v is an e-node, then ˜v′I ⊆ ṽ.

Claim 1: Θ defines a tree decomposition onG.

Proof. Condition (i) Definition 3.1 is obviously satisfied.
Condition (ii) is satisfied becauseG has hinges and hence
there are root nodes.

To see that condition (iii) holds, let~v′ be a child of~v.
ThenS~v′ ⊆ S~v∪C~v by the definition of the nodes, and hence
C~v′ ⊆C~v, becauseS~v′ separatesS~v from CΘ

~v′ . HenceB≥~v′ ⊆
B≥~v. Furthermore,C~v′ 6= C~v becauseS~v′ ∩C~v 6= /0.

It remains to verify condition (iv). Let~v be a node with
children~v1,~v2. Let S:= S~v, C := C~v, andSi := S~vi , Ci := C~vi

for i = 1,2. If~v is a root node, thenS1 = S2 = ṽ, and bothC1

andC2 are vertex sets of connected components ofG\S1.
Hence eitherC1 = C2 or C1∩C2 = /0.

If ~v is an e-node, thenv4 is a hinge extension ofS in
C, and bothC1 andC2 are vertex sets of connected compo-
nents ofG\ (S∪{v4}). HenceC1 andC2 are either equal
or disjoint. If they are equal, then so areS1 = S(C1) and
S2 = S(C2), and hence~v1 and~v2 areΘ-equivalent.

If ~v is an h-node, then there are no hinge extensions ofS
in C. HenceC1∩C2 = /0 by Corollary 4.7. y

Claim 2: The torsi defined byΘ onG have no hinges.

Proof. Consider the torsoJB~vK defined byΘ at a node~v.
If ~v is a root node, thenS := ṽ is a hinge, and for every
connected componentC of G\Sthere is a child~v′ of~v with



C~v′ = V(C). HenceB~v = S andJB~vK = K[S], which clearly
does not have a hinge.

If ~v is an e-node, thenv4 is a hinge extension ofS~v in
C~v. Then for every connected componentC of G\ (S~v ∪
{v4}) with V(C) ⊆ C~v there is a child~v′ of ~v with C~v′ =
V(C). HenceB~v = S∪{v4}. Furthermore,JB~vK = K[S~v∪
{v4}] because by the 3-connectedness ofG there are three
internally disjoint paths fromv4 to the vertices ofS~v. Again,
JB~vK does not have a hinge.

Finally, let~v be an h-node. Suppose for contradiction
thatJB~vK has a hingeS. If S is inseparable fromS~v, then for
every connected componentC of G\S that has an empty
intersection withS~v there is a child~v′ of~v with S~v′ = Sand
C~v′ = V(C). ThenSdoes not separateJB~vK, which is a con-
tradiction. If S is separable fromS~v, let S′ be a hinge that
is inseparable fromS~v and that separatesS from S~v. Then
there is a child~v′ of ~v with S~v′ = S′ andC~v′ ∩S 6= /0. Then
S 6⊆ B~v, which is also a contradiction. y

Claim 3: The torsi defined byΘ onG are minors ofG.

Proof. This follows from the fact that ifS is a hinge and
C the vertex set of a connected component ofG\S, then
G[C∪S]∪K[S] is a minor ofG.

We state one last lemma about hinges that we will need
in Section 4.4.

Lemma 4.9. For every k≥ 1, if a graph G has a hinge of
order k, then Kk+1 is a minor of G.

4.3. Decomposition into 3-connected components

For everyk ≥ 1, let Zk be the class of allk-connected
graphs, and letZ ∗

k be the union ofZk with all complete
graphs of order at mostk. Note thatZ ∗

1 is the class of
all connected graphs. For all classes of graphs, we let

Z
(∗)

k (C ) := Z
(∗)

k ∩C .

Theorem 4.10.Let C be a class of graphs that is closed
under taking minors. ThenC admits anIFP-definable tree
decomposition overZ ∗

3 (C ).

Proof. By Lemma 3.10,C admits anIFP-definable tree
decomposition overZ ∗

1 (C ). By Lemma 4.8 applied to
k = 1,2, the classZk(C ) admits anIFP-definable tree de-
composition overZ ∗

k+1(C ). Here we use the fact that all
minimal separators of order 1 and 2 are hinges. We can
combine the definable tree decompositions to a decomposi-
tion of C overZ ∗

3 (C ) by Lemma 3.10.

Remark 4.11.Fork = 1,2, the proof of Lemma 4.8 actually
gives stronger results than stated. Fork= 1, all torsi defined
by Θ are induced subgraphs ofG, which are known as the
blocksof G, and fork = 2, the torsi are topological minors
of G, which are known as the3-connected componentsof
G.

Figure 4.2. Two drawings of the graph L

Hence Theorem 4.10 can be strengthened to all classes
C of graphs closed under topological minors. Further-
more, every classC of graphs closed under taking induced
subgraphs admits anIFP-definable tree decomposition over
Z ∗

2 (C ). y

4.4. K5-free graphs

Let L be the graph displayed (twice) in Figure 4.2. The sec-
ond drawing ofL in Figure 4.2 shows thatK3,3 is a minor
of L. HenceL is not planar. However,L does not contain
K5 as a minor. (To see this, note that to obtainK5 from
L, we have to contract at least 5 edges to generate 5 ver-
tices of degree 4. But then only 3 vertices remain.) Let
L := {G | G∼= H for someH ⊆ L}, and letP denote the
class of planar graphs. Let us call aK5-free graphG edge-
maximalif there is noK5-free graphG′ with V(G′) = V(G)
andE(G′) ⊃ E(G).

Theorem 4.12 (Wagner [27]).Let G be an edge-maximal
K5-free graph that has no hinges. Then either G is planar
or G∼= L.

It is an easy consequence of Wagner’s theorem that every
K5-free graph has a tree decomposition over the class of
planar graphs and subgraphs ofL. We prove that there even
is a definable tree decomposition:

Theorem 4.13.The class of K5-free graphs admits anIFP-
definable tree decomposition overZ ∗

3 (P ∪L ).

Proof. It follows from Lemma 4.8 and Lemma 4.14 below
that the class of 3-connectedK5-free graphs admits anIFP-
definable tree decomposition overZ ∗

3 (P ∪L ). Then the
theorem follows from Theorem 4.10 and Lemma 3.9.

Lemma 4.14. Let G be a 3-connected K5-free graph that
has no hinges of order3. Then either G is planar or G is
isomorphic to a subgraph of L.

Proof. Let G′ ⊇ G with V(G′) = V(G) be edge-maximal
K5-free. If G′ is planar orG′ ∼= L, thenG is planar or iso-
morphic to a subgraph ofL. Otherwise, by Wagner’s Theo-
rem 4.12,G′ has at least one hinge. By the edge-maximality
of G′, all hinges ofG′ are cliques.

We now define a sequence of induced subgraphs
G1, . . . ,Gm of G′ and hingesS1, . . . ,Sm−1, whereSi is a
hinge of Gi . We let G1 = G′. Suppose we have defined



Gi . If Gi has no hinge or is planar, we letm = i. Other-
wise, we letSi be an arbitrary hinge ofGi and we letGi+1

be the connected component ofGi of maximum order. An
easy induction shows that allGi are 3-connected and edge-
maximalK5-free graphs and all the hingesSi are hinges of
G′. By Lemmas 4.9,|Si | ≤ 3. Then by Lemma 4.4,G\Si

has precisely two connected components, one of which con-
sists of a single vertexvi .

By Wagner’s Theorem 4.12, eitherGm
∼= L or Gm is pla-

nar. However,Gm
∼= L is impossible, becauseSm−1 induces

a triangle inGm. HenceGm is planar. Leti ∈ [m] be mini-
mum such thatGi is planar. Ifi = 1, thenG′ is planar and
henceG is also planar. So suppose thati ≥ 2. We fix some
planar embedding ofGi . Then the triangleSi−1 becomes a
cycle in the plane. Since we cannot extend the embedding to
Gi−1, both faces bounded by this cycle must be nonempty.
HenceSi−1 separatesGi , and therefore,Gi−1 \Si−1 has at
least three connected components. ThenG\ Si also has
at least three connected components, which is a contradic-
tion.

Theorem 4.15 (Grohe [9]). The class of 3-connected pla-
nar graphs isIFP-definable.

Corollary 4.16. The class of K5-free graphs is IFP-
definable.

PART II. DESCRIPTIVE COMPLEXITY

5. More preliminaries

5.1. Structures and their Gaifman graphs

We work with two-sorted relational structures. Elements of
the two sorts are calledverticesandnumbers. The vertex set
of a structureA, denoted byV(A), is an arbitrary finite set,
and the number set of every structure isZ≥0. Relations may
be mixed, but are always required to be finite. Vocabularies
are finite sets of relation symbols, each with a prescribed
sort. The interpretation of a relation symbolR is denoted by
R(A). Structures whose relations are entirely over the vertex
part are calledplain. We may identify the usual one sorted
relational structures with plain structures in our framework.
For example, we may view graphs as plain structures of vo-
cabulary{E}. The class of all structures is denoted byS ,
and the class of all plain structures bySP. If C is a class
of structures andσ a vocabulary, thenC [σ ] is the class of
all σ -structures inC . HenceG ⊆ S [{E}]. An ordered
structure is a structure whose vocabulary contains the dis-
tinguished relation symbol6 that is interpreted by a linear
order of the vertex set. The class of all ordered structures is
denoted byO.

The Gaifman graphof a σ -structureA is the graphGA

with vertex setV(GA) := V(A) and edges between all pairs
of verticesv,w such that there is a relation symbolR∈σ and

a tuple~a∈ R(A) such thatv,w∈ ã. Note that the Gaifman
graph only reflects the structure induced on the vertices and
completely ignores the part of the relations on the number
set. For every classC of graphs,S (C ) denotes the class of
all structures whose Gaifman graph is inC .

5.2. Inflationary fixed-point logic with counting

To introduce the logicIFP+C, inflationary fixed-point logic
with counting, we enhanceIFP by a counting mechanism
that allows us to define the cardinalities of definable sets by
terms of the numerical sort. We allow mixed fixed-points
over both sorts. To avoid undecidability, all variables rang-
ing over numbers must be bound by terms when they are
introduced. It is not hard to prove that our logicIFP+C has
the same expressive power as the more common versions
of fixed-point logic with counting that can be found in the
literature (e.g. [6, 7, 21, 22, 23]).

6. Capturing polynomial time

A Boolean queryis an isomorphism-closed class ofσ -
structures, for some plain vocabularyσ . Let us say that a
logic L capturesPTIME on a classC of structures if for ev-
ery Boolean queryQ ⊆ C , the queryQ is definable inL if
and only if it is decidable inPTIME. This definition is overly
simplistic, as there are artificial logics capturingPTIME in
this sense. However, the simple definition is sufficient for
this paper, where we are only concerned with the logicsIFP
and IFP+C anyway. For more details, I refer the reader to
one of the textbooks [5, 8, 17, 19] or to the short survey [11]
in this volume.

Theorem 6.1 (Immerman-Vardi Theorem [16, 26]). IFP
capturesPTIME on the classO of all ordered structures.

6.1. Definable orders

We want to apply the Immerman-Vardi Theorem to struc-
tures that are not ordered. Sometimes this is easy because
a linear order isdefinableon the structures we are consider-
ing. We say that a formulaϕ(~x,y,z) of some logicdefines
an orderon a classC of σ -structures (with parameters~x) if
for every structureA ∈ C there is a tuple~v ∈ V(A)|~x| such
that the binary relationϕ [A;~v,y,z] is a linear order onV(A).
We say that a classC of structures isIFP-orderableif for
every vocabularyσ there is anIFP-formula that defines an
order onC [σ ]. It is a straightforward consequence of the
Immerman-Vardi Theorem that if a classC of structures is
IFP-orderable thenIFP capturesPTIME onC .

Theorem 6.2 (Grohe [9]). The class ofZ3(P) of 3-
connected planar graphs isIFP-orderable.

Observe that if a classC of graphs isIFP-orderable, then
the classS (C ) is also IFP-orderable. Furthermore, if a



classC of structures isIFP-orderable andC ′ ⊇ C such that
for every vocabularyσ the differenceC ′[σ ]\C [σ ] is finite
up to isomorphism, thenC ′ is alsoIFP-orderable.

6.2. Definable canonisation

We call variables ranging over elements of the numerical
sort of our structuresnumber variables.

Definition 6.3. Let σ andτ be vocabularies.
(1) A numerical interpretation ofσ in τ with parameters

~x is a tuple

Γ(~x) =
(

γa(~x),γV(~x,y),
(

γR(~x,~yR)
)

R∈σ
)

of IFP+C[τ]-formulas, wherey is a number variable~yR

is a tuple of number variables whose length matches
the arity ofR, for eachR∈ σ .

In the following, let Γ(~x) be an interpretation ofσ in τ.
Furthermore, letA be aτ-structure, and let~a be a tuple of
elements ofV(A).
(2) Γ(~x) is applicableto (A,~a) if ~a has the same sort as~x

andA |= γa[~a].

(3) If Γ(~x) is applicable to(A,~a), we letΓ[A;~a] be theσ -
structure with vertex setV

(

Γ[A;~a]
)

:= γV [A;~a,y] and
relationsR

(

Γ[A;~a]
)

:= γR[A;~a,~yR], for R∈ σ . y

It is easy to prove that ifΓ(~x) is a numerical interpreta-
tion of σ in τ, then for everyIFP+C[σ ]-sentenceϕ there is
anIFP+C[τ]-sentenceϕ ′ such that for allτ-structuresA and
all tuples~a such thatΓ(~x) is applicable to(A,~a) we have
A |= ϕ ′ ⇐⇒ Γ[A;~a] |= ϕ .

Definition 6.4. Let Γ(x1, . . . ,xk) be a numerical interpreta-
tion of σ in σ .
(1) Γ(x̄) canonisesaσ -structureA if there is a tuple~a over

V(A) such thatΓ(~x) is applicable to(A,~a), and if for
each such tuple~a it holds thatΓ[A,~a] ∼= A.

(2) Γ(~x) canonisesa classC of σ -structures ifΓ(~x) canon-
ises each structure inC .

(3) A classC of structures isIFP+C-canonisableif for
every vocabularyσ there is a numericalIFP+C-
interpretationΓ(~x) that canonisesC [σ ]. y

The following lemma is used in [9, 12], and it is implicit
in earlier work such as [23] and [18]:

Lemma 6.5. Let C be a class of structures that isIFP+C-
canonisable. ThenIFP+C capturesPTIME onC .

7. Canonisation of decomposable structures

The main result of the second part of this paper states that
we can lift anIFP+C-canonisation from the torsi of a defin-
able tree decomposition to the whole decomposition. We
need one additional technical restriction on the tree decom-
positions:

Definition 7.1. A class C of graphs admits anIFP-
definable tree decomposition over a classA of graphsof
bounded adhesionif there is a TD-schemeΘ and ak∈ Z≥0

such that for everyG ∈ C the schemeΘ defines a tree de-
composition of adhesion at mostk onG overA . y

Observe that ifA is a class of graphsG of clique number
at mostk, then the adhesion of all tree definable decompo-
sitions overA is at mostk. All classesA we consider here
are of bounded clique number, hence tree decompositions
over these classes are automatically of bounded adhesion.

Theorem 7.2 (Second Lifting Theorem).Let C ,A be
classes of graphs such thatC admits anIFP+C-definable
tree decomposition overA of bounded adhesion. IfS (A )
is IFP+C-canonisable, thenS (C ) is IFP+C-canonisable.

Remark 7.3.The use of arbitrary two-sorted structures with
mixed relations, and not just plain structures, is crucial
for our proof of Theorem 7.2. Essentially, mixed rela-
tions come in as follows: We canonise the decomposable
structures inductively. So suppose we have a decomposi-
tion of the Gaifman graphGA of a structureA defined by
a TD-schemeΘ, and suppose that we have already canon-
ised the substructuresA[BΘ

≥~v′ ] for all children of aΘ-node
~v. Note that aΘ-node may have an unbounded number of
Θ-children. We can lexicographically sort the canonical
structures for the children. Then we expand the structure
A[B~v] by a mixed relation that contains tuples~vℓ~v, where~v
is aΘ-node andℓ~v ∈ Z≥0 such that for all~v,~v′ it holds that
ℓ~v ≤ ℓ~v′ if and only if canonical copy of the structureA[BΘ

≥~v]
is lexicographically smaller than the canonical copy of the
structureA[BΘ

≥~v′ ]. Then we canonise the expansionA[B~v],
and this will give us a canonisation ofA[B≥~v′ ]. We can sort
canonical structures because their universes are subsets of
Z≥0.

It is an open problem whether the version of Theo-
rem 7.2 for plain structures holds, that is, whether the
IFP+C-canonisability ofSP(A ) implies that ofSP(C ).

It is actually conceivable that for every classC of graphs
the IFP+C-canonisability ofSP(C ) implies the IFP+C-
canonisability ofS (C ) and hence that the two notions are
equivalent. Of course a proof of this would be the nicest
way to settle the questions. y

Corollary 7.4. IFP+C captures polynomial time on the
class of K5-free graphs.

Let me close this paper by observing that our techniques
actually prove slightly more general results than stated so
far. For a classC of graphs, letR(C ) be the class of all
structuresA whose vocabulary contains the symbol6 such
that: 6A is a linear order of a subsetW ⊆ V(A), and the
induced subgraphGA \W is in C . It is not hard to prove
that if the classS (C ) is IFP-canonisable, then so is the
classR(C ). This gives us the following corollary:



Corollary 7.5. LetC either be a class of graphs of bounded
tree width or the class of all K5-free graphs. ThenIFP+C
capturesPTIME onR(C ).

8. Concluding remarks

We have introduced definable tree decompositions and
proved two general theorems about lifting definability re-
sults from the torsi of a definable tree decomposition to the
whole decomposed structure. As an application of these
general theorems, we prove that the class ofK5-free graphs
is definable inIFP and canonisable inIFP+C; the latter im-
plies thatIFP+C captures polynomial time on this class.

The ultimate goal of this line of research is to prove that
all (nontrivial) classes of graphs defined by excluded minors
are definable inIFP and IFP+C-canonisable. The present
paper is a significant step towards this goal, because via
Robertson and Seymour’s structure theorem [25] for classes
of graphs with excluded minors it enables us to reduce the
definability questions to graphs that are almost embeddable
into a fixed surface (in a precise technical sense).

In this paper, we were only interested in fixed-point
definability, but definable tree decompositions could be
studied for other logics as well, in particular for monadic
second-order logicMSO. This may shed some new light
on the relation between fixed-point definability andMSO-
definability.
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