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Abstract With Julian Marifio [12], we also proved the corresponding
result for classes of structures of bounded tree width. The
We introduce a notion oflefinable tree decompositions key step in the proofs of these results was to show that the
of graphs. Actually, a definable tree decomposition of a class of planar graphs and all classes of bounded tree width
graph is not just a tree decomposition, but a more compli- are IFP+C-canonisablethat is, they admit a canonisation
cated structure that represents many different tree decom-mapping definable ifFP+C by means of a syntactical inter-
positions of the graph. It is definable in the graph by a tu- pretation. Acanonisation mappinépr a class¢” of struc-
ple of formulas of some logic. In this paper, only study tree tures may be viewed as a mapping that associates with each

decomposition definable in fixed-point logic. We say that a structureA € € a canonical ordered copy of the structure.
definable tree decompositionagera class of graphs if the The present paper is a continuation of the line of work of
pieces of the decomposition are in this class. [9, 10, 12]. The question we address here is the following:
We prove two general theorems lifting definability re- g,nn656 we have structures that can be decomposed into
sults from the pieces of a tree decomposition of a graph t0 impjer structures. Then how can we lift definability result
the whole graph. Besides unifying earlier work on fixed- .o the simpler structures to the decomposable structures
point definability and descriptive complexity theory on-pla  thg technical notion of decomposition we use here is that of

nar graphs and graphs of bounded tree width, these gen-yee gecompositions of graphs over simpler graphs, which
eral results can be used to prove that the class of all graphs 5.« called theorsi of the decomposition. For example, all

without a Ks-minor is definable in fixed-pointlogic and that - granhs have a tree decomposition whose torsi are3the
flx_ed-pomt logic with counting captures polynomialtime on  .jnnacted componerd$the graphs. Graphs haeunded
this class. tree widthif and only if they have a tree decomposition
whose torsi are of bounded size. A well-known theorem
] due to Wagner [27] states th&t-freegraphs, that is, graphs
1. Introduction that do not contain the complete 5-vertex grégtas a mi-

The question of whether there is a logic that captures poly-"0" have a tree decomposition Whos_e torsi are either planar
nomial time is the central open problem in descriptive com- 9raphs or subgraphs of one exceptional 8-vertex gtaph

plexity theory. It was first asked by Chandra and Harel [4] (Shown in Figure 4.2). Wagner's theorem was generalised
in the context of database theory, and later in a slightly dif PY Robertson and Seymour [25] to a powerful structure the-
ferent form by Gurevich [13] in the context of finite model ©rem for arbitrary classes of graphs with excluded minors,
theory. We say that a logic captures polynomial time (on  Which states that for eveiy> 1, all Ki-free graphs have a

a class% of structures)if the polynomial time decidable tree de_composmon whose torsi are almost embeddable into
properties of structures (in the clag3 are precisely those ~SOMe fixed surface.

definable inL. Actually, the exact definition of a logic cap- If we want to lift definability results from the torsi of
turing PTIME is a bit more subtle; | refer the reader to the a structure’s tree decomposition to the whole structure, we
short survey [11] in these proceedings for the definition and need to be able to define the tree decomposition. The main

more background on the quest for a logic captufmgVIE.

A natural logic that was considered a candidate for a
logic capturing®TIME for a while isinflationary fixed-point
logic with counting,IFP+C. Although Cai, Furer, and Im-
merman [3] proved thaFP+C does not captureTIME on
all structures, in my LICS-paper 10 years ago [9] | showed
thatIFP+C capture®TIME on the class of all planar graphs.

contribution of this paper is to come up with a notiordef
finable tree decompositichat allows us to lift definability
results and results about canonisation and capturing poly-
nomial time. The technical problem in trying to define tree
decompositions is that definable sets are invariant under is
morphisms, whereas tree decompositions usually are not —
think of a tree decomposition of a cycle. Therefore, defin-



able tree decompositions are more complicated structureOrganisation of the paper
than normal tree decompositions. Intuitively, they may be o . .
viewed as directed acyclic graphs whose nodes carry theThe paper 'S.d'V'ded Into two parts_._ In the first part, we

. g . introduce definable tree decompositions and prove the de-
torsi of the decomposition. These structures do notjustrep .. . . :

- . finability results. The second part is concerned with defin-

resentone tree decomposition of a graph, but many dlﬁerentable canonisation. Due to space limitations, we have to omit
tree decompositions of parts of the graph. X P '

We prove that the tree decompositions of graphs into most of the proofé. To make this conference version more

their 3-connected components, of bounded tree WIdthmteregtmg, | decided to put an emphasis on the first part.
. ) But this means that the second part has become very con-

graphs into torsi of bounded order, andKy-free graphs . . -

: : . densed and mainly consists of definitions and a statement of

into planar graphs and subgraphsLoére all definable in

inflationary fixed-point logidFP. | believe that Robertson the main result.
and Seymour’s decompositioni§§-free graphs into almost
embeddable torsi is also definablelfP, but this requires
considerable additional work related to the definability of 7., andN denote the sets of nonnegative integers and nat-
“almost embeddable” graphs, which will not be carried out ural numbers (that is, positive integers), respectivelgr F

Notation

in this paper. m,n € Zso, we letmn] .= {¢{ € Z>o | m< ¢ < n} and
We prove two general theorems about lifting definability [n] := [1,n].
results: The first states that if a class of torsi is definable i We often denote tuplews, ..., V) by V. If Vdenotes the

IFP, then the class of all graphs with a decompaosition over tuple(vy, ..., ), then bywe denote the setvs, ..., v }. If
these torsi is also definable IBP. Once the framework is ¢ — (V1,...,Vg) andw = (w,...,w,), then bywt we denote

set up, this result is not difficult to prove. Nevertheless, the tuple(vs, ..., Vik, W1, ..., W;). By |V| we denote the length
it allows us to prove that the class of &-free graphsis  of a tuplev, that is,|(v1,...,vi)| = k.
definable inIFP. It is not obvious how to obtain atFpP-
definition of this class in a direct way. PART |. DEFINABILITY

The second result, which is much deeper, is concerned
with definable canonisation and descriptive complexity the _— .
ory. For a clas¥’ of graphs, we let” (%) be the class of alll 2. Preliminaries
structures whose Gaifman graph iséh We prove thatif 2.1, Graphs
o/, ¢ are classes of graphs, and we havé=grC-definable o . i
tree decomposition of the graphséhwith torsi in <7, then Graphs in th_'s paper are always finite, nonempty, and sim-
if . (/) is IFP+C-canonisable then so i#'(¢). To obtain ple, where simple means that there are no loops or parallel

this result, we need to work with two-sorted relationalstru ~ ©49€s. Unless explictly called "directed”, graphs are undi
tures with one finite universe of vertices and a universe of "€cted- The vertex set of a grahis denoted by (G) and

all nonnegative integers, and with mixed relations invodyi the edge set bff(G). We view graphs as relational struc-

vertices and numbers. A consequence of this general resulfures WithE,(G), being a t?i”ary rel_ation o (G). HOWE‘Ye“
is thatiFP+C capture®TIME on the class oKs-free graphs. W€ often find it convenient to view edges (of qndwected
Our general approach using definable tree decomposi-graphs) as 2-element subset¥d6) and use notations like

tion also unifies the result from [12] that all classes ofstru e={uv} aqdv € e ¢ denotes thg class Of_ all graphs.
tures of bounded tree width atEP+C-canonisable and a  SuPgraphs, '”‘,’“"e‘?‘ subgraphs, union, and intersection of
lemma from [9] lifting the canonisability of 3-connected graphrs] areddeflr&ed 't? the Esm;all vr\]/ay. We weilV] to de-
planar graphs to arbitrary finite graphs. Although it was noget € induced su gdrap Giwith vertex seW_gV((;;),
obvious that these two results were proved by very similar and we \_N”teG\W o e_no_teG[\/(G) _\W]‘ A minor o a
ideas, the proofsin [9, 12] were very ad-hoc, and for a long graphG is a graph that is isomorphic to a graph obtained

time it was not clear to me how a common generalisation from. a_subgraph o€ by (_:ontractlng .edges. A graphlt
might look. free if it does not contairH as a minor. Theorder of a

There is one last consequence of our results that | Wouldgraph' denotgd. b)G|, is the number of vertices @.
like to mention. It is known [3] that a simple combinato-  FOr every finite nonempty s&, we letk [V] be thecom-
rial algorithm known as the Weisfeiler-Leman (WL) algo- Pl€te graphwith vertex setv. We letK, := K [[n]], and
frithm can be used as a polynomial time isomorphism test on'Ve €tKmn be & complete bipartite graph with parts of size
Classes_ of graphs that adniiP+C-definable Canomsatl_on' nors, such as the class K§-free graphs, can be decided in polynomial
Hence it follows from our results that the WL-algorithm  time [24]. It seems that the algorithm of [24], which unfarately is only

provides an isomorphism test fig-free graphé_ published in Russian, uses algebraic techniques. Thugtiptescombina-
torial algorithm we obtain here fdfs-free graphs may be of some interest.
1it is known that isomorphism for all graph classes with edelt mi- 2A full version of this paper is available on my webpage.




m,n. A cliquein a graphG is a setW C V(G) such that
G|W] is a complete graph, and amdependent séh G is a
setW C V(G) such thaE(G[W]) = 0. Pathsandcyclesin
graphs are defined in the usual way. Téegthof a path or
cycle is the number of its edges. Arternalvertex of a path
is a vertex that is not an endpoint, and a path finto W’

is a path with one endpoint ¥ and one endpoint iw’ and
no internal vertex i UW’. Two paths aréinternally) dis-
joint if they have no (internal) vertex in commo@onnect-
ednessandconnecteccomponents are defined in the usual
way. LetG be a graph. A seiV C V(G) is connectedf
W #£ 0 andG|W)] is connected. A grapB is k-connected
for somek > 1, if |G| > k and for everyW? C V(G) with
|W| < k the graphG\ W is connected. A se8C V(G) is a
separatorof G, or separates Gif G\ Shas more than one
connected componers.is aminimal separatoif S, but no
proper subset d§, is a separator. Tharderof a separator is
its cardinality|S. For setdV;, W CV(G), a setSC V(G)
separates Wfrom W, or is a(W,Ws)-separator if there
is no path from a vertex i\ \ Sto vertex inW, \ Sin the
graphG\ S. Sis aminimal (W;,W,)-separatorif S, but no
proper subset 08, is a (W, Ws)-separator. Recall that by
Menger’s Theorem there is a family bflisjoint paths from
Wi to W, if and only if there is no(Wp,Ws)-separator of
order less thak.

A forestis an undirected acyclic graph, andraeis a
connected forest. It will be a useful convention to call the
vertices of trees and forest®des A rooted treeis a triple
T = (V(T),E(T),r(T)), where(V(T),E(T)) is a tree and
r(T) e V(T) is a distinguished node called theot. A node
s of a rooted tre€l is theancestorof a nodet, andt is a
descendantf s, if s appears on the unique path from the
rootr(T) tot. Parentsandchildrenof a node are ancestors
and descendants adjacent to the node.

2.2. Inflationary fixed-point logic

let¢[G;va,...,Vi,Xit1, ..., %] denote thék—i)-ary relation
consisting of all tuplegw,...,w¢_;) € V(G)¥' such that
G ': ¢[V1,...,Vi,Wl,...,Wk,i].

3. Tree decompositions

A tree decompositioof a graphG is a pair(T,B), where
T is a tree and is a mapping that associates with every
nodet € V(T) a setB; C V(G) such that for every e V(G)
the set{t € V(T) | ve B} is connected ifT, and for every
ec E(G) thereis & € V(T) such thae C B;. The set,
fort € V(T), are called thdagsof the decomposition. It
is sometimes convenient to have the tfeim a tree decom-
position rooted; we always assume it is. Midth of a tree
decompositioT,B) is max{|B;| — 1|t € V(T)}. Thetree
width of a graphG, denoted by tWG), is the minimum of
the widths of all tree decompositions & The adhesion
of a tree decompositiofiT,B) is maxX|BsNB| | {s;t} €
E(T)}.

Let (T,B) be a tree decomposition of a gra@andt
V(T) such thaB; # 0. Thetorso [B] att is the graph

U

swith {st}cE(T)

[B] :=G[B] U K[BsNBJ.

(T,B) is a tree decompositioover a class¢ of graphs if
all its torsi belong tos’. Note that torsi are only defined for
nodes with nonempty bags. For every nodeV/ (T), we let

B>t .

Bs.

s=t or sdescendant df

3.1. Definable tree decompositions
Definition 3.1. LetL be a logic
(1) Ak-ary TD-scheme ihis a tuple

© = (6y(X),6e(X.X), Bsep(X,Y), Bcomp(X.Y))

| assume that the reader has a solid background in logic

and, in particular, is familiar with the standard fixed-poin
logics used in finite model theory. Background material
can be found in [5, 8, 17, 19]. In the first part of this pa-
per, we shall work withinflationary fixed-point logidFP
over graphsIFP-formulas are build from atomic formulas
Exy, expressing incidence, and=y by the usual propo-
sitional connectives, existential and universal quarstifon
over vertices, and a fixed-point operator with inflationary
semantics. To follow the first part of the paper, it is suffi-
cient to know that basic graph properties involving connec-
tivity and separators can be expressetFn

Let me just mention one nonstandard piece of notation
here: We writep (x1, . .., X«) to denote that the free variables
of the formula¢ are amongy,...,x. For a graphs and
verticesvy, ..., vk, we writeG |= @ [vy, ..., V] to denote that
G satisfiesp if x; is interpreted by; fori € [K]. Fori <k, we

of L-formulas in the language of graphs, whirg are
k-tuples of variables.
In the following, letG be a graph an® a k-ary TD-
scheme.
(2) All tuplesV € V(G)¥ with G = 8[v] are called®-
nodes (in G)and for all®-nodes/,V, if G = 6z [V, V]
thenV is a called®-child of V. For every®-nodev we

let
§ = esep[G;vay]a
Céa = ecomp[G;V,Y],

We call ©-nodesv,V ©-equivalentif § = S and
c?=cg.



(3) © defines a tree decomposition onifGhe following that at some point during the decomposition we are@t a
conditions are satisfied: nodev whereB‘gV is a cycle of odd length, say with ver-

(i) Forevery®-nodev, the seC? is the vertex set of tices wo, ..., Wzn in cyclic order, and we haved = {wo}
a connected component 6f\ S§> and henc€; = {wy,...,won}. The obvious way to decom-
(i) Forevery connected componddbf G there is at pose the cycle quld be to pick aw [2n] and attach two
least onéd-nodev with C8 — V/(C) childrenvy, v, to V with separator%’1 = S% = {wp,w; } and
- . o _ , O _ fw
Each such node is called@ot node for C componenty = {w,....Wi-1}, G = {Wis1,..., Wan},
i ] But whichi shall we choose? There is no distinguished
(iif) Ifg O-n%dev 'SSO'Ch('ald of a®-nodev, then  cpoice, not even a unique “middle” or “first” vertex on the
By By andCZv cCy cycle, as there is an automorphism that kesp$ixed and

(iv) Forall®-nodes/and all®-childrenvy, v, of V, ei- mapsw; to Wa, andwy, to Wy.1. It seems as if we can only
therv; andv, are®-equivalent, oBS;, NBY;, = resolve this by choosing seveiand create tw®-children
NS for all of them. But this would violate condition (iv) of Def-

inition 3.1.

In the following, we assume thé&t defines a tree decompo-

sition onG, and we le¥ be a®-node. : : ) .
. . That is, the tuple/ will already contain one of the vertices
(4) Thebag defined by atVis the set w; fori € [2n] that determines the choice of the childrem.at
BO -— B® \ U Cv(?. Surprisingly, this solves our problem, because we can sim-
v 29 ply add one nod#; to our decomposition for each choice

The solution is to make the choice already at the nbde

¥ ©-child of v
-cnido of wi. All these nodes will have the same separator and
(5) Thetorso defined b atV is the graph component, hence be equivalent, and therefore not violate
Definition 3.1 (iv).
B°| = GIB® UK U K] This idea appears, in slightly different forms, in the
[[ V]] BYIUKISY) - e-cLh%d of ¥ [Sf;)] proofs of Theorem 4.1 and Lemma 4.8. a

Definition 3.5. Suppose that a TD-scherfedefines a tree
decomposition on a grapB. Then a tree decomposition
(T,B) of G is compatiblewith © if it satisfies the following

Remark 3.2.In this paper, we only consider TD-schemesin conditions:
the logiclFP. Hence from now on, all TD-schemes willbe (i) By(r) = 0 for the rootr (T).
be inIFP, and we will not mention this anymore when we  (ji) All nodest € V(T)\ {r(T)} are®-nodes.
introduce them.

It is straightforward to generalise the definition of de-
finable tree decompositions from graphs to arbitrary struc- (V) If a nodet’ is a child of nodet # r(T), thent is a
tures. But as the classes of structures we study here are ~ ©-child oft.

always_ defined in terms of their _Gaifman graphs, we would (v) For all nodeg € V(T)\ {r(T)}, the torso[B] of the
not gain much from this generalisation. 4 decomposition(T,B) att is equal to the torsdB®]

Remark 3.3.While the definition of definable tree decom- defined by att. -

position may seem quite generic, it took me a while to arrive | emma 3.6. Suppose that a TD-schen@defines a tree

at this definition. Two important aSpectS of the definition decomposition ona graph G. Then there is a tree decompo_
that are not entirely obvious are: (A) The definition is based sition (T, B) of G that is compatible witi®.

on the set8>; rather than the bad&, and (B) the nodeg
are not linked to the separat@sor the bags in adirectway.  Proof. To distinguish between nodes of the tie¢o be de-
(A) will be crucial in the proof of Lemma 3.6; via Defini-  fined and®-nodes, we call the formér-nodes Similarly,

tion 3.1 (iii) it guarantees the acyclicity of the graph defin ~ we speak off -children We defineT inductively:

by the ©-child relation. (B) is important in the proofs of  — We create a root node=r(T), which is not a@-node.
Theorem 4.1 and Lemma 4.8, where tBenodesv will be All other T-nodes will be®@-nodes.

chosen in such a way that they do r_10t only control the bag _ g, every connected componébf G, we arbitrarily
at the_current nodg, but also the ch_lldren of the node. The  -hoo0se @-nodev with C® =V(C) and make it a child
following example illustrates this point. J

(6) Theadhesiorof the decomposition defined Iyon G
is max{|Sy| | V©-node}. g

(iii) All children of the rootr(T) are root®-nodes.

of the rootfr.

Example 3.4. Suppose we want to define a tree decompo- — For everyT-node V # r, we arbitrarily choose®-
sition of some grapl& by a TD-scheme®, and suppose childrenvy, ..., Vi, of V such that for ever®-child v of



Vthere is exactly onee [m] such that is ©-equivalent

toVi. We letvy, ..., Vi, be theT -children ofv.
Formally, children are only defined in trees and it is notclea
yet thatT really is a tree. Therefore, the definition should
be read as the definition of a directed graph, whétés‘a
T-child of V' simply means that there is an edgeTirfrom
Vto V. Directed pathsn T are paths in this directed graph.
In Claim 2, we shall proof tha is a tree.

Observe that if? is a®@-child of V, then

BY NBY, = . (3.1)

Claim 1: LetVy,V, € V(T)\ {r} such that is an ancestor
of V, in T. Then for everyl -nodev on a directed path if
from ¥y to ¥, it holds thatBe N B>v2 .

Proof. This follows from (3.1) by a straightforward induc-
tion. a

Claim 2: T is a rooted tree.
Proof. It follows immediately from the definition of that

It follows from Claim 1 thatw € By for everyv on the path
in T from V3 to vV, and for every on the path inl from V3
to Vo. Hencew € By for everyv on the path inl from v to
Vo. J

Claim 4: For every edge € E(G) there isanod@< V(T)
such thate C B;.

Proof. LetV € V(T) such thae C B, ande Z BY,, for all
T-childrenV of V. Suppose for contradiction thatg By.
Arguing similarly as in the proof of Claim 3, we find&
child V' of v such thaenCy # 0. AseZ B, = Y UCY,
this contradicts Def|n|t|on 3.1 (i).

Hence(T,B) is a tree-decomposition d. It follows
immediately from the definitions th&f,B) is compatible
with ©. O

Definition 3.7. Let © be a TD-scheme. Furthermore, let
o/, % be classes of graphs.
(1) © defines a tree decomposition on a gr&plover .o/
if all torsi defined by® on G are in«/.

all nodes are reachable from the root via a directed path. (2) © defines a tree decomposition @hover </ if for ev-

It follows from Definition 3.1 (iii) thatT has no directed
cycle. Hence ifT is not a tree, then there isTanodevy

ery G € % the schem® defines a tree decomposition
onGover.s.

with T-childrenv; andV, that have a common descendant (3) The class?’ admits anFP-definable tree decomposi-

V3. Then by Definition 3.1 (iii) and (iv)

CS NS, CBY.

O O

B>V3 >V1 >V2

Hence by Claim 1,
C §v3

It follows thatcg’3 = 0, which is a contradiction. J
We letB; := 0 andBy := BY foreveryv e V(T)\ {r}. For
everyw € V(G), we letB~1(w) := {Ve V(T) | we By}.

L(w) is connected

B>V3 >V3

Claim 3: For everyw € V(G) the setB~
inT.

Proof. To prove thaB~1(w) is nonempty, le¥ € V(T) such
thatw e B, andw ¢ B, for all T-childrenv of V. Suppose
for contradiction thawv ¢ By. Then by the definition oB®,
there is a®@-child V' of V such thatv ¢ CVG,’,. But then there
also is aT-child V' of V such thawv € C§ C B?,,. Thisis a
contradiction, which proves th& *(w) is nonempty.

To see thaB~*(w) is connected, suppose that By, N
By, for two T-nodesvy, V.. We shall prove thatv € By for
everyV on the (undirected) path i from V; to V,. This
follows immediately from Claim 1 if/; is an ancestor of,
orvice-versa. Otherwise, |& be the last common ancestor
of V1 andvy, and fori = 1,2, letV| be theT-child of V3 on
the path fromv; to ;. Thenv) #£9V,, and we have

WerlﬂszCBevﬂB v C§Q§CBV3

tion over.« if there is a TD-scheme that defines a tree
decomposition of¥” over.«/. J

Corollary 3.8. If a TD-schemée® defines a tree decompo-
sition on a graph G over a clasg’ of graphs, then there is
a tree decomposition of G over'.

We close this section with two simple lemmas, whose
straightforward proofs we omit.

Lemma 3.9. Let.«?, %4,% be classes of graphs such tht
admits aniIFP-definable tree decomposition ovet and &
admits anlFP-definable tree decomposition ovef. Then
¢ admits anFP-definable tree decomposition ovef.

Lemma 3.10. There is a TD-schem® such that for all
graphs G, the schen®@ defines a tree decomposition on G
and the torsi defined b® on G are precisely the connected
components of G.

3.2. Definability results

Lemma 3.11. Let® be a k-ary TD-scheme.

(1) There is anFP-sentence td such that for all graphs
G we have G=tdp if and only if® defines a tree de-
composition on G.

(2) There is aniFP-formula bag,(X,y) such that for ev-
ery graph G and every tuplgc V(G)X, if © defines
a tree decomposition on G antlis a ®-node, then
bagy[G;V,y] =



(3) There is anFP-formulators@(X,y,z) such that for ev-
ery graph G and every tuplgc V(G)X, if © defines
a tree decomposition on G andlis a ©-node, then
torsas[G; V., 7 is the edge relation of the torsfBS] .

Proof. This follows immediately from the fact that the sets
. €2, B, and the®-child relation are definable by the
formulas appearing ir® (by definition) and that graph
reachability is definable itFP. O

Theorem 3.12 (First Lifting Theorem). Let © be a TD-
scheme. Lety be anIFP-definable class of graphs, and let
Jo() be the class of all graphs G such thatdefines a
tree decomposition on G over.

ThenZs (&) is IFP-definable.

Proof. Follows easily from the previous lemma. O

Corollary 3.13. Let« be anlFP-definable class of graphs,
and let.7 (<) be the class of all graphs that have a tree
decomposition ovew/. Suppose tha? (<) admits anFp-
definable tree decomposition ovef.

ThenS (/) is IFP-definable.

Definition 3.14. A TD-scheme® defines a tree decompo-
sition on a graplG weakly ovea classe if there is a tree
decomposition o6s over.e/ that is compatible witt®. |

Lemma 3.15. Let <7 be anIFP-definable class of graphs.
Then for every TD-schen®@there is a TD-schem®’ such
that for all graphs G, if© defines a tree decomposition on G
that is weakly overs then®' defines a tree decomposition
on G overg.

Proof. Let G be a graph such th@ defines a tree decom-
position onG that is weakly overy. Let (T,B) be a tree
decomposition o6 that is compatible witl®.
We inductively define sets#{, for i € Z>q, of ©-nodes
as follows:
— M :=0.

— A{y1is the set of al®-nodes/ such that]BY] € <7,

Be:Bgv\ U Cg,

Ve, GO [V,V]

and

8] —cBIuKisIL U KISyl

Ve, G=6e[V,¥]

A straightforward induction shows that all nodesTofx-
cept the root are i)~ 4.

Furthermore, it is easy to define #FP-formula ¢(X)
(not depending o1®) such thatp[G;X] = U;>q-4. We let
& (X) 1= 6y (X) A ¢ (X), and6g := 6, es/ep:: Bsep eéomp::
Bcomp Then®' := (&), 6¢, Olep, Oomp) defines a tree de-
composition orG over.«. O

4. Applications
4.1. Graphs of bounded tree width

For evenk e N, let% denote the class of all graphs of order
at mostk, and let.9_1 be the class of all structures of tree
width at mostk — 1. Observe that a structure is #_1 if
and only if it has a tree decomposition 0¥

Theorem 4.1. For every ke N, the class%_; admits an
IFP-definable tree decomposition V.

Corollary 4.2 (Grohe and Marifio [12]). For every ke
Z>o, the class% is IFP-definable.

4.2. Hinges

Definition 4.3. A hingeof a graphG is a minimal separator
Sof G such that for every connected compon@ndf G\ S
the graptG [V (C) US| UK (S is a minor ofG. g

The basic idea that we pursue in the following is to re-
cursively separate a graph along small hinges until no more
small hinges are left. This gives us a tree decomposition
where the torsi have no small hinges and are minors of the
graph. Thinking of a graph without small hinges as “highly
connected”, we have thus decomposed our graph into highly
connected components that are all minors of the graph. If
we are lucky, this decomposition is even definable. Unfor-
tunately, this idea only works for hinges of order at most 3.
Hinges of order 1 and 2 are just minimal separators, hence
a graph without hinges of order 1 and 2 is 3-connected in
the usual sense. The analogue for hinges of order 3 does
not holds; there are minimal separators of order 3 that are
no hinges. However, the following lemma shows that in 3-
connected graphs, minimal separators of order 3 that are no
hinges can just separate single vertices from a graph. This
will be good enough for us.

Lemmas 4.4 and 4.6 contain the graph theory that goes
into the proof of Lemma 4.8, the main result of this section.

Lemma 4.4. Let G be a 3-connected graph and S a sepa-
rator of G of order3. Then either S is a hinge, or S is an

independent set and S has exactly two connected com-
ponents, one of which has ordér

Proof. Let S={vi,V2,v3}. As G is 3-connectedSis mini-
mal

We first prove that ifSis not an independent set, th&n
is a hinge. To see this, suppose that, v} € E(G), and
let C,C’ be two connected components®f\ S. Letw €
C'. As G is 3-connected, there are internally disjoint paths
R, fori € [3], fromw to vi. By deleting all vertices not in
V(C)USUUE,V(R), contracting to a single vertex, and
contracting?; andP; to single edges, we see tialV (C) U
S UK]S is a minor ofG.



It follows that if G\ Shas more than two connected com-
ponents, theis a hinge, because by contracting one of the
components we can obtain an edge between vertic8s in

So suppose th& \ Shas precisely two connected com-
ponents, sayC; andCy, and that|Cy| > 2 and|Cy| > 2.
Letw € V(Cz). As G is 3-connected, there are internally
disjoint pathsR, fori € [3], from w to v;. At least one of
these paths has length 2. If not, {w} is a separator of
G, which contradicts the 3-connectednes§&ofSay,P;, has
length at least 2. Thevi(Py) \ {vi,w} # 0. LetQ be a path
fromV(Py) \ {vi,w} to V(P) UV(P3) in G\ {v1,w}; such
a path exists becausg is 3-connected. Sawy; € V(P1)
andw, € V(P,) are the endpoint of). By contracting
the piece ofP, from w; to v; and the piecé® from w;
to vp, and contracting to a single edge, we obtain an
edge between; andv,. Now we can argue as above to
prove thatG[V (C;) US UK]S is a minor ofG. By symme-
try, G[V(Cy) US UK is also minor ofG. HenceSis a
hinge. O

Corollary 4.5. For all k € [3] there is anIFP-formula
hingg(x1, ..., %) such that for every k-connected graph G
and every tupl@ € V(G)X we have

G = hingg[V] <= Vis a hinge.

Proof. The proofs fork = 1,2 are straightforward because

hinges of order 1 and 2 are just minimal separators, and the

statement fok = 3 follows from Lemma 4.4. O
Let G be a graph anwv C V(G). We say that a hing8

of G is inseparabldrom W if there is no hingeS such that

S| <19,W,S¢Z S, andS separateSfromW. Thesphere

around Wis the setS(W) of all vertices inV(G) \ W that

are adjacent to a vertexW. For a subgraphl C G, we let

S(H) :=S(V(H)). A hinge extension of W of order at most

k is a vertexv € V(G) \ W such that for every connected

componen€ of G\ (WU {v}), the spher&(C) aroundC is

a hinge of order at mo&t

Lemma 4.6. Let ke [3]. Let G be a k-connected graph
and WC V(G) a clique of order k in G such that there is
no hinge extension of W of order k. Lat S be hinges of
order k of G such that:

() S1 #SandW¢Z S fori=1,2.

(i) Fori =1,2, the hinge Sis inseparable from W.
Fori =12, let G be a connected component of § such
thatWnV(C) = 0. ThenMC;) NV (Cy) = 0.

Proof. We only prove the lemma fd¢ = 3. The proofs for
k=1 andk = 2 are similar, but simpler.

Fori = 1,2, letA be the connected component®f §
with WNV(A) # 0, and letB; be the union of all other
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Figure 4.1.

connected components &\ S. ThenC; C B;. To sim-
plify the notation, for the rest of this proof we do not dis-
tinguish between the grapis andB; and their vertex sets.
LetS, ;=S NS andSa :=SNAz i, Sg:=SNB3j for
i =1,2. Figure 4.1(a) illustrates the situation.

As § does not separat_; fromW, we have

1Sl =1, [Sal =1

Suppose for contradiction thel{C;) NV (Cy) # 0. Then
B; NBy # 0, and henc&, U S g U Sy is a separator of.
SinceG is 3-connected, this implies

ISy USIsUS| > 3.

Case 1. WC S US,.
Then eithefWN S| > 2 or  WNS;| > 2. Without loss of
generality we assume th&¥ NS | > 2. Figures 4.1 (b) and
(c) show the only two configurations that are consistent with
all the constraints we have derived or imposed so far.

| claim that in both configurations the unique vertex in
Sig is a hinge extension & of order 3. To see this, l&
be a connected component®@f, (WU Sjg). Suppose first
thatS(C) = WU Sig. Then there is a patR with internal
vertices inC from Sja to §g. This path must interse&,
which is only possible ir§s. HenceSs NV (C) # 0. But
then there is a path fro®g to S5 which does not intersect
S;, which is impossible. Thu§(C) c WU S and hence
|S(C)| = 3. As|Sig| = 1, it follows thatS(C) contains at
least two vertices of the cliqu&/. HenceS(C) is not an
independent set and therefore a hinge by Lemma 4.4.

Thus the vertex irs;g is indeed a hinge extension \bf.
This is a contradiction, because we assumedwhais no
hinge extensions of order 3.

(4.1)

(4.2)

|



Case22WZ S US,.

ThenA;NA; # 0. HenceS:= S, USaUSa separates
A;N A, from B; NBy. By the 3-connectedness @fit fol-
lows that|S| > 3, and by (4.2) we obtaifs| = 3. | claim that
Sisahinge. ffWNS| > 2, thenSis not an independent set.
If WnNS| <1andG has exactly two connected components,
then one of these components contas Sand the other
contains the nonempty sefgs andS;s. Hence both com-
ponents have order at least 2. Otherwige, S has more
than two connected components. In all caseis, a hinge
by Lemma 4.4. ASSseparate§, from W, this contradicts
assumption (ii). O

Corollary 4.7. Let ke [3]. Let G be a k-connected graph.

following properties: There is a connected comporizof
G\ ¥ such that

— there is no hinge extension @fifi C;

- Vit CV(C)UWi;

— Vj isinseparable from ~

It is easy to defingFP-formulasroot(X), e-nodéX), and
h-nod€X) that define the root nodes, h-nodes, and e-nodes.
We let 8, (X) be the disjunction of these three formulas.

We define thaFP-formula 6sefX,y) in such a way that

for all root nodes/ we havebfsedG;V,y] = 0, and for all e-
nodes or h-nodes we hafgeJG;V,y] = V. We define the
formulaBcomp(X, y) in such a way that for all root nod&sve
haveB.ompG; V,y] = V(G), and for all e-nodes or h-nodes,

Let S be a hinge of order k in G and C a connected compo-8.0mgG; V,Y] is the vertex set of the connected component
nent of G\ S such that there is no hinge extension of order of G\ ¥ that contains \ V.

kof SinC. Let §S CV(C)US be hinges of order k of G
such that:

() S1#Sand $S#Sfori=12

(i) Fori =1,2, the hinge Sis inseparable from S.
Fori =12, let G be a connected component of § such
that SNCi = 0. Then (Cy) NV (Cyp) = 0.

Proof. Apply Lemma 4.6 to the grapB[V (C) U S UK]S.
(|

Lemma 4.8. For all k € [3], there is a TD-schem® that

In the following, for all node¥ we letS; := BseG; V, Y],
Cy := BeomdG; V,y], andBsy := S§UC;. This is the same
notation as in Definition 3.1, except that we omit the super-
script®.

We define the formul&e (X,X') in such a way that for all
nodes/,V we haveG = 6 [V, V] if and only if the following
conditions are satisfied:

— Vv is an e-node or h-node.

— Sy separate§; from Cy.
— If Vis aroot node or an h-node, thén=vj.

for all k-connected graphs G defines a tree decomposition — |f Vis an e-node, theyf T ¥.

on G such that for all torsfB] defined byo on G:
(1) [B] is a minor of G.

(2) [B] has no hinges of ordex. k.

Proof. We only prove the lemma fd¢ = 3. The proofs for
k =1 andk = 2 are similar, but simpler. For simplicity, all

hinges and hinge extensions in this proof are assumed to b

of order 3.
It suffices to define & that defines a tree decomposition
with the desired properties on all 3-connected graphsdth

at least one hinge, because by Corollary 4.5 the class of 33, —

connected graphs with at least one hing&isdefinable.

We shall define a 6-ary TD-scheme that for every 3-
connected grapks with at least one hinge defines a tree
decomposition o5 with the desired properties.

To simplify the notation, for 6-tupleg= (v1,...,vs) we
let Vi := (v1,Vo,v3) andvy := (Va,Vs,Vs).

Let G be a 3-connected graph with at least one hinge.

The IFP-formulas we shall define in the following will not
depend orG. The decomposition defined by on G has

Claim 1: © defines a tree decomposition Gn

Proof. Condition (i) Definition 3.1 is obviously satisfied.
Condition (ii) is satisfied becauge has hinges and hence
there are root nodes.

To see that condition (iii) holds, et be a child ofv.
ThenS; C S;UGC; by the definition of the nodes, and hence

%:7 C Gy, becaus&y separate§; from Cv‘?. HenceB.y C

B-y. FurthermoreCy # C; becausé&y NGy # 0.
It remains to verify condition (iv). Le¥ be a node with

childrenvy,vo. LetS:= §;, C:=Cy, andS .= §;, G :=C;,
1,2. IfVis aroot node, theB, =S, =V, and bothC,
andGC; are vertex sets of connected component&qafs;.
Hence eithe€; =C, orC;NCy, = 0.

If Vis an e-node, them, is a hinge extension db in
C, and bothC; andC; are vertex sets of connected compo-
nents ofG\ (SU{v4}). HenceC; andC; are either equal
or disjoint. If they are equal, then so ag = S(C;) and
S = S(Cy), and hencd; andv, are®-equivalent.

If Vis an h-node, then there are no hinge extensiors of
in C. HenceCyNC, = 0 by Corollary 4.7. J

three kinds of nodes: root nodes, e-nodes, and h-nodes.

Root nodesare tuplesv € V(G)® whereVi is a hinge and
Vil = Vi. E-nodesare tuples/ € V(G)® whereyi is a hinge
andvs = v5 = v is a hinge extension of|.” H-nodesare
tuplesv e V(G)6 wherevi # Vj; are both hinges with the

Claim 2: The torsi defined by on G have no hinges.

Proof. Consider the tors@By] defined by® at a nodev.
If Vis a root node, thei®:= V is a hinge, and for every
connected compone@tof G\ Sthere is a child? of ¥ with



Cy =V(C). HenceBy = Sand[By] = K[S], which clearly
does not have a hinge.

If Vis an e-node, thew, is a hinge extension d§; in
Cy. Then for every connected componé&of G\ (S;U
{v4}) with V(C) C Gy there is a child? of V with Cy =
V(C). HenceBy = SU{v4}. Furthermore[By] = K[S;U
{v4}] because by the 3-connectednes&dhere are three
internally disjoint paths from, to the vertices o§;. Again,
[By] does not have a hinge.

Finally, letV be an h-node. Suppose for contradiction @

that[By] has a hing&. If Sis inseparable fror;, then for
every connected compone@tof G\ S that has an empty
intersection withS; there is a child’ of V with Sy = Sand
Cy =V(C). ThenSdoes not separafy], which is a con-
tradiction. If Sis separable fron%;, let S be a hinge that
is inseparable frong; and that separatesfrom S;. Then
there is a child/ of Vwith §y = S andCy NS# 0. Then
S¢ By, which is also a contradiction. J

Claim 3: The torsi defined b on G are minors ofG.

Proof. This follows from the fact that iSis a hinge and
C the vertex set of a connected componen&dfS, then
G[CUY UK]S is a minor ofG. O

We state one last lemma about hinges that we will need

in Section 4.4.

Lemma 4.9. For every k> 1, if a graph G has a hinge of
order k, then kg, 1 is a minor of G.

4.3. Decomposition into 3-connected components

For everyk > 1, let Zx be the class of alk-connected
graphs, and let,* be the union ofZ with all complete
graphs of order at mo&t Note thatZ7" is the class of
all connected graphs.

29(%) = 2 ne.

Theorem 4.10. Let ¥ be a class of graphs that is closed

under taking minors. The# admits aniFP-definable tree
decomposition ovefs (¢).

Proof. By Lemma 3.10,% admits anIFP-definable tree
decomposition overZ;*(¢). By Lemma 4.8 applied to
k= 1,2, the classZ(%) admits aniFP-definable tree de-
composition overZ,’, ,(¢’). Here we use the fact that all

For all classes of graphs, we let

Figure 4.2. Two drawings of the graph L

Hence Theorem 4.10 can be strengthened to all classes
of graphs closed under topological minors. Further-
more, every clas®” of graphs closed under taking induced
subgraphs admits dAP-definable tree decomposition over
Z(6). 4

4.4. Ks-free graphs

LetL be the graph displayed (twice) in Figure 4.2. The sec-
ond drawing ofL in Figure 4.2 shows thd{z 3 is a minor

of L. Hencel is not planar. Howevelt, does not contain

Ks as a minor. (To see this, note that to obti from

L, we have to contract at least 5 edges to generate 5 ver-
tices of degree 4. But then only 3 vertices remain.) Let
Z:={G| G=H forsomeH C L}, and letZ” denote the
class of planar graphs. Let us calkg-free graphG edge-
maximalif there is noKs-free graphG’ with V(G') =V (G)
andE(G') D E(G).

Theorem 4.12 (Wagner [27]).Let G be an edge-maximal
Ks-free graph that has no hinges. Then either G is planar
orG=L.

Itis an easy consequence of Wagner’s theorem that every
Ks-free graph has a tree decomposition over the class of
planar graphs and subgraphd.ofWe prove that there even
is a definable tree decomposition:

Theorem 4.13. The class of K-free graphs admits atrP-
definable tree decomposition ovéf' (¥ U.Z).

Proof. It follows from Lemma 4.8 and Lemma 4.14 below
that the class of 3-connect&d-free graphs admits arP-
definable tree decomposition ovéf (# U.Z). Then the
theorem follows from Theorem 4.10 and Lemma 3.9

Lemma 4.14. Let G be a 3-connectedsKree graph that
has no hinges of orde3. Then either G is planar or G is

minimal separators of order 1 and 2 are hinges. We canisomorphic to a subgraph of L.
combine the definable tree decompositions to a decomposi-

tion of ¢ over 25 (¢’) by Lemma 3.10. O

Remark 4.11 Fork = 1,2, the proof of Lemma 4.8 actually
gives stronger results than stated. ker1, all torsi defined
by © are induced subgraphs & which are known as the
blocksof G, and fork = 2, the torsi are topological minors
of G, which are known as th8-connected componeni$
G.

Proof. Let G’ O G with V(G') = V(G) be edge-maximal
Ks-free. If G’ is planar orG' = L, thenG is planar or iso-
morphic to a subgraph @f. Otherwise, by Wagner’s Theo-
rem 4.12G has at least one hinge. By the edge-maximality
of G, all hinges ofG’ are cliques.

We now define a sequence of induced subgraphs
Gy,...,Gm of G and hingesS,,...,Sn_1, where§ is a
hinge of G;. We letG; = G'. Suppose we have defined



Gi. If G; has no hinge or is planar, we let=1i. Other- a tupled € R(A) such that,,w € 4. Note that the Gaifman
wise, we let§ be an arbitrary hinge dB; and we letG;, 1 graph only reflects the structure induced on the vertices and
be the connected component@f of maximum order. An  completely ignores the part of the relations on the number
easy induction shows that & are 3-connected and edge- set. For every clasg of graphs,” (%) denotes the class of
maximalKs-free graphs and all the hing&sare hinges of  all structures whose Gaifman graph is4h
G'. By Lemmas 4.9|S| < 3. Then by Lemma 4.4G\ S
has precisely two connected components, one of which con-5.2. Inflationary fixed-point logic with counting
sists of a single vertex.

By Wagner's Theorem 4.12, eith@&, = L or G, is pla-
nar. HoweverGy, = L is impossible, becaus®, 1 induces
a triangle inGp. HenceGp, is planar. Let € [m] be mini-
mum such tha6; is planar. Ifi = 1, thenG' is planar and
henceG is also planar. So suppose that 2. We fix some
planar embedding dB;. Then the triangl&§_1 becomes a
cycle inthe plane. Since we cannot extend the embedding t
Gi_1, both faces bounded by this cycle must be nonempty.
HenceS_; separates;, and thereforeG;_1\ §_1 has at
least three connected components. TK&ERS also has

at least three connected components, which is a contradic—6 C . | ial ti
tion. 0 . apturlng polynomia time

To introduce the logitFP+C, inflationary fixed-point logic

with counting we enhancéFP by a counting mechanism
that allows us to define the cardinalities of definable sets by
terms of the numerical sort. We allow mixed fixed-points
over both sorts. To avoid undecidability, all variablesgan

ing over numbers must be bound by terms when they are
introduced. It is not hard to prove that our logf®+C has

he same expressive power as the more common versions
of fixed-point logic with counting that can be found in the
literature (e.g. [6, 7, 21, 22, 23]).

A Boolean queryis an isomorphism-closed class of
Theorem 4.15 (Grohe [9]). The class of 3-connected pla- gy ctures, for some plain vocabulasy Let us say that a
nar graphs isFP-definable. logic L capturesPTIME on a clas¥’ of structures if for ev-
ery Boolean queng C ¥, the query2 is definable irL if

Corollary 4.16. The class of Kfree graphs ISIFP- o0\ ititis decidable iR TIME. This definition is overly

definable. L . ) . .
simplistic, as there are artificial logics capturiRgIME in

PART Il. DESCRIPTIVE COMPLEXITY this sense. However, the simple definition is sufficient for
this paper, where we are only concerned with the logfies

5. More preliminaries andIFP+C anyway. For more details, | refer the reader to
one of the textbooks [5, 8, 17, 19] or to the short survey [11]

5.1. Structures and their Gaifman graphs in this volume.

We work with two-sorted relational structures. Elements of Theorem 6.1 (Immerman-Vardi Theorem [16, 26]). IFP
the two sorts are callecerticesandnumbers The vertex set  capturesPTIME on the clas¥ of all ordered structures.
of a structureA, denoted by (A), is an arbitrary finite set,

and the number set of every structur€&isy. Relationsmay g 1. Definable orders

be mixed, but are always required to be finite. Vocabularies )
are finite sets of relation symbols, each with a prescribed We want to apply the Immerman-Vardi Theorem to struc-

sort. The interpretation of a relation symiis denoted by~ tUres that are not ordered. Sometimes this is easy because
R(A). Structures whose relations are entirely over the vertex@ linear order isiefinableon the structures we are consider-
part are calleghlain. We may identify the usual one sorted INg- We say that a formulé(X,y,2) of some logicdefines
relational structures with plain structures in our framgwo ~ @n orderon a classs” of o-structures (with param‘ex‘tei)nf

For example, we may view graphs as plain structures of vo-fOr every structuré € ¢’ there is a tuple/ € V(A)"™ such

cabulary{E}. The class of all structures is denoted.liy; ~ that the binary relatiog[A;V,y, 7] is a linear order oV (A).
and the class of all plain structures . If € is a class We say that a clas® of structures igFP-orderableif for

of structures andr a vocabulary, thef¢[o] is the class of ~ €VeTY vocabulary there is anFP-formula that defines an
all o-structures in%. Hence? C .#[{E}]. An ordered order on%’[o]. It is a straightforward consequence of the
structure is a structure whose vocabulary contains the dis-Mmerman-Vardi Theorem that if a clagSof structures is
tinguished relation symbat that is interpreted by a linear ~ 'FP-orderable thetFP capture*TIME on%'.
order of the vertex set. The class of all ordered structgres i Theorem 6.2 (Grohe [9]). The class ofZ3(2) of 3-
denoted by

The Gaifman graphof a o-structureA is the graphGa
with vertex seV (Ga) :=V(A) and edges between all pairs Observe that if a class’ of graphs isFP-orderable, then
of verticesv,w such that there is a relation symifo¢ o and the class¥ (%) is alsoIFP-orderable. Furthermore, if a

connected planar graphs isP-orderable.



class# of structures isFP-orderable ané” 2 % such that
for every vocabulary the differences” (o] \ €’|o] is finite
up to isomorphism, the#” is alsolFP-orderable.

6.2. Definable canonisation

We call variables ranging over elements of the numerical

sort of our structuresumber variables

Definition 6.3. Let o andt be vocabularies.
(1) A numerical interpretation ot in T with parameters
Xis atuple

M%) = (va(®), w (X Y), (REZYR)) pey)
of IFP+C[1]-formulas, where is a number variablgz

Definition 7.1. A class ¥ of graphs admits anFP-
definable tree decomposition over a clagsof graphsof
bounded adhesioifithere is a TD-schem® and ak € Z~¢
such that for everg € ¥ the schem® defines a tree de-
composition of adhesion at mdsbn G over.«7. J

Observe that it is a class of graphs of clique number
at mostk, then the adhesion of all tree definable decompo-
sitions overe? is at mosk. All classese we consider here
are of bounded clique number, hence tree decompositions
over these classes are automatically of bounded adhesion.

Theorem 7.2 (Second Lifting Theorem).Let ¢, </ be
classes of graphs such th@t admits aniFP+C-definable
tree decomposition over’ of bounded adhesion. (<)

is a tuple of number variables whose length matchesis IFP+C-canonisable, ther’ (%) is IFP+C-canonisable.

the arity ofR, for eachR € o.

In the following, letl'(X) be an interpretation o& in t.

Furthermore, lefA be at-structure, and le& be a tuple of

elements oV (A).

(2) T'(X) is applicableto (A, d) if & has the same sort &s
andA = y[d].

(3) If [ (X) is applicable tq A, &), we letl'[A; d] be theo-
structure with vertex seéf (F[A;d) == w[A;&y] and
relationsR(I[A; &) := yr[A;&,r], for R€ 0. J

It is easy to prove that if (X) is a numerical interpreta-
tion of o in 1, then for everyFP+C[o]-sentence there is
anlFP+C|t]-sentence’ such that for allr-structuresA and
all tuplesd such that" (X) is applicable to(A, &) we have
AE¢ = TAF 9.

Definition 6.4. Let'(xg,...,%) be a numerical interpreta-
tionof o in 0.

(1) I'(x) canonises o-structureA if there is a tuples over
V(A) such thaf (X) is applicable to/A, &), and if for
each such tuplé it holds that" [A,&] = A.

(2) ' (X) canonises classg’ of o-structures if” (X) canon-
ises each structure i#.

(3) A class% of structures idFP+C-canonisablef for
every vocabularyc there is a numericalFP+C-
interpretatior (X) that canonise®’[o]. a

The following lemma is used in [9, 12], and it is implicit
in earlier work such as [23] and [18]:

Lemma 6.5. Let € be a class of structures that iEP+C-
canonisable. TherrP+C capturesPTIME on %

7. Canonisation of decomposable structures

Remark 7.3.The use of arbitrary two-sorted structures with
mixed relations, and not just plain structures, is crucial
for our proof of Theorem 7.2. Essentially, mixed rela-
tions come in as follows: We canonise the decomposable
structures inductively. So suppose we have a decomposi-
tion of the Gaifman graplea of a structureA defined by

a TD-scheme, and suppose that we have already canon-
ised the substructure!S[Bgv] for all children of a®-node

V. Note that a@-node may have an unbounded number of
©-children. We can lexicographically sort the canonical
structures for the children. Then we expand the structure
A[By] by a mixed relation that contains tuplé&, wherev

is a®@-node and’y € Zxo such that for alW,V it holds that

Ly <ty if and only if canonical copy of the structuﬁéBgv]

is lexicographically smaller than the canonical copy of the
structureA[BS,]. Then we canonise the expansiaBy],

and this will give us a canonisation 8fB-y]. We can sort
canonical structures because their universes are sulfsets o
Z>0.

It is an open problem whether the version of Theo-
rem 7.2 for plain structures holds, that is, whether the
IFP+C-canonisability of#p(«7) implies that of#p(%).

Itis actually conceivable that for every cleg=of graphs
the IFP+C-canonisability of #p(%) implies the IFP+C-
canonisability of (%) and hence that the two notions are
equivalent. Of course a proof of this would be the nicest
way to settle the questions. J

Corollary 7.4. IFP+C captures polynomial time on the
class of K-free graphs.

Let me close this paper by observing that our techniques
actually prove slightly more general results than stated so
far. For a class’ of graphs, letZ(%) be the class of all

The main result of the second part of this paper states thatstructuresA whose vocabulary contains the symkokuch

we can lift anlIFP+C-canonisation from the torsi of a defin-

that: <* is a linear order of a subs& C V(A), and the

able tree decomposition to the whole decomposition. We induced subgrapfa \ W is in €. It is not hard to prove
need one additional technical restriction on the tree decom that if the class”(¥’) is IFP-canonisable, then so is the

positions:

classZ(%¢). This gives us the following corollary:



Corollary 7.5. Let% either be a class of graphs of bounded
tree width or the class of all &free graphs. ThetFP+C
capturesPTIME on Z(%).

8. Concluding remarks

We have introduced definable tree decompositions and [11
proved two general theorems about lifting definability re-
sults from the torsi of a definable tree decomposition to the [12]
whole decomposed structure. As an application of these

general theorems, we prove that the clasggfree graphs
is definable inFP and canonisable itFP+C; the latter im-
plies thatiFP+C captures polynomial time on this class.

The ultimate goal of this line of research is to prove that
all (nontrivial) classes of graphs defined by excluded nsnor

are definable inFP andIFP+C-canonisable. The present

paper is a significant step towards this goal, because viaj14
Robertson and Seymour’s structure theorem [25] for classes
of graphs with excluded minors it enables us to reduce the

9]

[10]

[13]

definability questions to graphs that are almost embeddable[15]
into a fixed surface (in a precise technical sense).

In this paper, we were only interested in fixed-point

definability, but definable tree decompositions could be [16]

studied for other logics as well, in particular for monadic

second-order logi¢1SO. This may shed some new light
on the relation between fixed-point definability am&oO-
definability.
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